Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a5 - n = a(a4 - 1 )= a(a - 1)(a + 1)(a2 +1)
Xét a(a-1)là 2 số tự nhiên liên tiếp nên chia hết cho 2
(n+1)n(n-1) là 3 số tự nhiên liên tiếp nên chia hết cho 3
Mà (2;3) = 1 => chia hết cho 6
Lại xét :
a = 5k => tích trên chia hết cho 5
a = 5k+1 => a - 1 = 5k chia hết cho 5
a = 5k+2 => a2 + 1 = (5k + 2)2 + 1 = 25k2 + 5 chia hết cho 5
a = 5k+3 => a2 + 1 = (5k + 3)2 + 1 = 25k2 + 10 chia hết cho 5
a = 5k+4 => a + 1 = 5k + 5 chia hết cho 5
Mà (6; 5) = 1.
Vậy a5 - a chia hết cho 30 với mọi a \(\in\) Z
Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)
Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)
Hay \(a^5-a\)\(⋮\)\(30\)
Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30
\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)
Mà \(a+b+c\)\(⋮\)\(30\)
\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)
Đặt A = n⁵ - n = n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (\(⋮6\), vì \(⋮2,3\)) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
Do \(\left\{{}\begin{matrix}\text{n(n-2)(n+2)(n - 1)(n + 1) ⋮ 5 }\\\text{5n(n - 1)(n + 1) ⋮ 5 }\end{matrix}\right.\)
\(\Rightarrow\text{ n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) }⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1)(2)=> \(A⋮30\) do (5,6)=1
Sai đề r nếu a=2 và n=1 thì an+5-an+4=26-25=32 ko chia hết cho 30
Ta có: 30=2.3.5
a5-a=a(a4-1)=a(a2+1)(a2-1)=a(a+1)(a-1)(a2+1)=a(a+1)(a-1)(a2-4)+5a(a+1)(a-1)=a(a+1)(a-1)(a+2)(a-2)+5a(a+1)(a-1)
Vì a(a+1)(a-1)(a+2)(a-2) chia hết cho2;3;5( tích 5 số tự nhiên liên tiếp)
5a(a+1)(a-1) chia hết cho 2;3;5
Suy ra a(a+1)(a-1)(a+2)(a-2)+5a(a+1)(a-1) chia hết cho 5;2;3
Hay a5-a chia hết cho 30 (đpcm)