K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8 2020

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
8 tháng 8 2020

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

NV
27 tháng 6 2019

a/ \(cos\left(x+15^0\right)=1\Leftrightarrow x+15^0=k360^0\Rightarrow x=-15^0+k360^0\)

b/ \(cos\left(3x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\3x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

c/ \(cos\left(4x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{3}\Rightarrow cos\left(4x-\frac{\pi}{4}\right)=cosa\)

\(\Rightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=a+k2\pi\\4x-\frac{\pi}{4}=-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{16}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

d/ \(cos4x=cos\left(x+\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=4x+k2\pi\\x+\frac{\pi}{3}=-4x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{9}+\frac{k2\pi}{3}\\x=-\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)

e/ \(cos5x=-cos3x=cos\left(\pi-3x\right)\Rightarrow\left[{}\begin{matrix}5x=\pi-3x+k2\pi\\5x=3x-\pi+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=-\frac{\pi}{2}+k\pi\end{matrix}\right.\)

5 tháng 9 2020

2cos^2x+2cos^2(2x)+4cos^3(2x)-3cos2x=5

NV
5 tháng 9 2020

e/

\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)

\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow x=k\pi\)

NV
24 tháng 7 2020

d/

ĐKXĐ: ...

\(\Leftrightarrow cos^2x+\frac{1}{cos^2x}+2=2\left(cosx+\frac{1}{cosx}\right)\)

\(\Leftrightarrow\left(cosx+\frac{1}{cosx}\right)^2=2\left(cox+\frac{1}{cosx}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx+\frac{1}{cosx}=0\\cosx+\frac{1}{cosx}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos^2x+1=0\left(vn\right)\\cos^2x-2cosx+1=0\end{matrix}\right.\)

\(\Rightarrow cosx=1\)

\(\Rightarrow x=k2\pi\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow cos\frac{6x}{5}+2=3cos\frac{4x}{5}\)

Đặt \(\frac{2x}{5}=a\)

\(\Rightarrow cos3a+2=3cos2a\)

\(\Leftrightarrow4cos^3a-3cosa+2=6cos^2a-3\)

\(\Leftrightarrow4cos^3a-6cos^2a-3cosa+5=0\)

\(\Leftrightarrow\left(cosa-1\right)\left(4cos^2a-2cosa-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosa=1\\cosa=\frac{1+\sqrt{21}}{4}>1\left(l\right)\\cosa=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{2x}{5}\right)=1\\cos\left(\frac{2x}{5}\right)=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2x}{5}=k2\pi\\\frac{2x}{5}=\pm arccos\left(\frac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k5\pi\\x=\pm\frac{5}{2}arccos\left(\frac{1-\sqrt{21}}{4}\right)+k5\pi\end{matrix}\right.\)

NV
16 tháng 6 2019

Câu 1:

\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)

Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)

Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)

Hàm số không có GTLN và GTNN

Câu 2:

\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)

NV
16 tháng 6 2019

Câu 3:

\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)

\(y=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)

Câu 4:

\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\frac{2}{11}\le y\le2\)

NV
29 tháng 9 2020

\(\Leftrightarrow1-\frac{1}{2}sin^22x+cos\left(x-\frac{\pi}{4}\right)sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

Đặt \(x-\frac{\pi}{4}=a\Rightarrow x=a+\frac{\pi}{4}\)

\(\Rightarrow1-\frac{1}{2}sin^2\left(2a+\frac{\pi}{2}\right)+cosa.sin\left(3a+\frac{3\pi}{4}-\frac{\pi}{4}\right)-\frac{3}{2}=0\)

\(\Leftrightarrow1-\frac{1}{2}cos^22a+cosa.cos3a-\frac{3}{2}=0\)

\(\Leftrightarrow2-cos^22a+cos4a+cos2a-3=0\)

\(\Leftrightarrow-cos^22a+2cos^22a-1+cos2a-1=0\)

\(\Leftrightarrow cos^22a+cos2a-2=0\)

\(\Leftrightarrow cos2a=1\Leftrightarrow cos\left(2x-\frac{\pi}{2}\right)=1\)

\(\Leftrightarrow sin2x=1\Rightarrow x=\frac{\pi}{4}+k\pi\)

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0