Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)
\(\Leftrightarrow-3sin^22x+sin2x+4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
5.
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)
\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)
\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)
\(\Leftrightarrow sin^22x=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)
a/ \(cos\left(x+15^0\right)=1\Leftrightarrow x+15^0=k360^0\Rightarrow x=-15^0+k360^0\)
b/ \(cos\left(3x+\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\3x+\frac{\pi}{3}=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{36}+\frac{k2\pi}{3}\\x=-\frac{7\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
c/ \(cos\left(4x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{3}\Rightarrow cos\left(4x-\frac{\pi}{4}\right)=cosa\)
\(\Rightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=a+k2\pi\\4x-\frac{\pi}{4}=-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{16}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
d/ \(cos4x=cos\left(x+\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=4x+k2\pi\\x+\frac{\pi}{3}=-4x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{9}+\frac{k2\pi}{3}\\x=-\frac{\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/ \(cos5x=-cos3x=cos\left(\pi-3x\right)\Rightarrow\left[{}\begin{matrix}5x=\pi-3x+k2\pi\\5x=3x-\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=-\frac{\pi}{2}+k\pi\end{matrix}\right.\)
e/
\(2cos^2x+2cos^22x+4cos^32x-3cos2x=5\)
\(\Leftrightarrow1+cos2x+2cos^22x+4cos^32x-3cos2x=5\)
\(\Leftrightarrow2cos^32x+cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos^22x+3cos2x+2\right)=0\)
\(\Leftrightarrow cos2x=1\)
\(\Leftrightarrow x=k\pi\)
d/
ĐKXĐ: ...
\(\Leftrightarrow cos^2x+\frac{1}{cos^2x}+2=2\left(cosx+\frac{1}{cosx}\right)\)
\(\Leftrightarrow\left(cosx+\frac{1}{cosx}\right)^2=2\left(cox+\frac{1}{cosx}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx+\frac{1}{cosx}=0\\cosx+\frac{1}{cosx}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x+1=0\left(vn\right)\\cos^2x-2cosx+1=0\end{matrix}\right.\)
\(\Rightarrow cosx=1\)
\(\Rightarrow x=k2\pi\)
c/
\(\Leftrightarrow cos\frac{6x}{5}+2=3cos\frac{4x}{5}\)
Đặt \(\frac{2x}{5}=a\)
\(\Rightarrow cos3a+2=3cos2a\)
\(\Leftrightarrow4cos^3a-3cosa+2=6cos^2a-3\)
\(\Leftrightarrow4cos^3a-6cos^2a-3cosa+5=0\)
\(\Leftrightarrow\left(cosa-1\right)\left(4cos^2a-2cosa-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosa=1\\cosa=\frac{1+\sqrt{21}}{4}>1\left(l\right)\\cosa=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cos\left(\frac{2x}{5}\right)=1\\cos\left(\frac{2x}{5}\right)=\frac{1-\sqrt{21}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x}{5}=k2\pi\\\frac{2x}{5}=\pm arccos\left(\frac{1-\sqrt{21}}{4}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k5\pi\\x=\pm\frac{5}{2}arccos\left(\frac{1-\sqrt{21}}{4}\right)+k5\pi\end{matrix}\right.\)
Câu 1:
\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)
Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)
Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)
Hàm số không có GTLN và GTNN
Câu 2:
\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)
\(y=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\)
\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)
\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)
Câu 3:
\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)
\(y=1-\frac{3}{4}sin^22x\)
Do \(0\le sin^22x\le1\)
\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)
\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)
Câu 4:
\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)
\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)
\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)
\(\Leftrightarrow11y^2-24y+4\le0\)
\(\Leftrightarrow\frac{2}{11}\le y\le2\)
e/
Đề câu này chắc chắn đúng chứ bạn?
f/
\(sin^4x+cos^4x=\frac{3}{4}\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{3}{4}\)
\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{1}{2}sin^22x=0\)
\(\Leftrightarrow1-2sin^22x=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
c/
\(y=sin\left(4x-\frac{\pi}{3}\right)+sin\left(\frac{\pi}{3}\right)+5\)
\(=sin\left(4x-\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}+5\)
Do \(-1\le sin\left(4x-\frac{\pi}{3}\right)\le1\)
\(\Rightarrow4+\frac{\sqrt{3}}{2}\le y\le6+\frac{\sqrt{3}}{2}\)
d/
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin2x+5\)
\(y=6-3sin^2x.cos^2x+3sin2x\)
\(y=-\frac{3}{4}sin^22x+3sin2x+6\)
\(y=\frac{3}{4}\left(sin2x+1\right)\left(5-sin2x\right)+\frac{9}{4}\ge\frac{9}{4}\)
\(y_{min}=\frac{9}{4}\) khi \(sin2x=-1\)
\(y=\frac{3}{4}\left(sin2x-1\right)\left(3-sin2x\right)+\frac{33}{4}\le\frac{33}{4}\)
\(y_{max}=\frac{33}{4}\) khi \(sin2x=1\)
1.
\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}\left(cos^4\frac{x}{2}-sin^4\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow sinx\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow sinx.cosx=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow\frac{1}{2}sin2x=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow sin2x=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
3.
ĐKXĐ: ...
\(\frac{1}{cosx}+\frac{1}{2sinx.cosx}=\frac{1}{2sinx.cosx.cos2x}\)
\(\Leftrightarrow2sinx.cos2x+cos2x=1\)
\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)
\(\Leftrightarrow2sinx\left(cos2x-sinx\right)=0\)
\(\Leftrightarrow cos2x-sinx=0\)
\(\Leftrightarrow1-2sin^2x-sinx=0\)
\(\Leftrightarrow2sin^2x+sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)