K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2023

`cos 3x+cos 7x=sin 3x-sin 7x`

`<=>sin 3x-cos 3x=sin 7x+cos 7x`

`<=>sin(3x-\pi/4)=sin(7x+\pi/4)`

`<=>[(7x+\pi/4=3x-\pi/4+k2\pi),(7x+\pi/4=[3\pi]/4-3x+k2\pi):}`

`<=>[(x=-\pi/8+[k\pi]/2),(x=\pi/20+[k\pi]/5):}`

19 tháng 2 2023

batngo

NV
21 tháng 9 2020

\(A=\frac{cos3x+cos9x+cos5x+cos7x}{sin3x+sin9x+sin5x+sin7x}=\frac{2cos6x.cos3x+2cos6x.cosx}{2sin6x.cos3x+2sin6x.cosx}\)

\(=\frac{2cos6x\left(cos3x+cosx\right)}{2sin6x\left(cos3x+cosx\right)}=tan6x\)

\(A=1\Rightarrow tan6x=1\Rightarrow x=\frac{\pi}{24}+\frac{k\pi}{6}\)

23 tháng 9 2020

bằng cot6x chứ bạn???

15 tháng 7 2020

\(\text{c) }sin3x-\sqrt{3}cos3x=2cos5x\\ \Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=cos5x\\ \Leftrightarrow sin\frac{\pi}{6}\cdot sin3x-cos\frac{\pi}{6}\cdot cos3x=cos5x\\ \Leftrightarrow cos\left(3x+\frac{\pi}{6}\right)=-cos5x\\ \Leftrightarrow cos\left(3x+\frac{\pi}{6}\right)=cos\left(\pi-5x\right)\\ \Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{6}=\pi-5x+m2\pi\\3x+\frac{\pi}{6}=5x-\pi+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{48}+\frac{m\pi}{4}\\x=\frac{7\pi}{12}-n\pi\end{matrix}\right.\)

\(d\text{) }sinx\left(sinx+2cosx\right)=2\\ \Leftrightarrow cos^2x+\left(sinx-cosx\right)^2=0\\ \Leftrightarrow cosx=sinx=0\left(VN\right)\)

\(e\text{) }\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\\ \Leftrightarrow\sqrt{3}sin2x+cos2x=sin7x-\sqrt{3}cos7x\\ \Leftrightarrow sin2x\cdot\frac{\sqrt{3}}{2}+cos2x\cdot\frac{1}{2}=sin7x\cdot\frac{1}{2}-cos7x\cdot\frac{\sqrt{3}}{2}\\ \Leftrightarrow sin2x\cdot cos\frac{\pi}{3}+cos2x\cdot sin\frac{\pi}{3}=sin7x\cdot cos\frac{\pi}{3}-cos7x\cdot sin\frac{\pi}{3}\\ \Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(7x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=7x-\frac{\pi}{3}+m2\pi\\2x-\frac{\pi}{3}=\frac{4\pi}{3}-7x+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-m2\pi}{5}\\x=\frac{5\pi}{27}+\frac{n2\pi}{9}\end{matrix}\right.\)

15 tháng 7 2020

\(\text{a) }\sqrt{3}sin2x-cos2x+1=0\\ \Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=-\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos2x-sin\frac{\pi}{3}\cdot sin2x=\frac{1}{2}\\ \Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)=cos\frac{\pi}{3}\\ \Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{3}+m2\pi\\2x-\frac{\pi}{3}=-\frac{\pi}{3}+n2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+m\pi\\x=n\pi\end{matrix}\right.\)

\(\text{b) }pt\Leftrightarrow sin4x=\frac{1-4cosx}{3}\\ \Leftrightarrow sin^24x+cos^24x=\left(\frac{1-cos4x}{3}\right)^2+cos^24x=1\\ \Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{4}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{4}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{arccos\left(-\frac{4}{5}\right)}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
15 tháng 9 2020

a/

\(\Leftrightarrow2sin4x.cos3x=2sin7x.cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\sin7x=sin4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{2}+k\pi\\7x=4x+k2\pi\\7x=\pi-4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k\pi}{3}\\x=\frac{k2\pi}{3}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)

b.

\(\Leftrightarrow2cos4x.cosx=2cos8x.cosx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos8x=cos4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=4x+k2\pi\\8x=-4x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{6}\end{matrix}\right.\) \(\Leftrightarrow x=\frac{k\pi}{6}\)

NV
22 tháng 11 2019

\(cosx+cos3x+cos2x+cos4x=0\)

\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)

\(\Leftrightarrow cosx.\left(cos2x+cos3x\right)=0\)

\(\Leftrightarrow cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=\pi+k2\pi\end{matrix}\right.\)

NV
22 tháng 11 2019

\(sinx+sin7x+sin3x+sin5x=0\)

\(\Leftrightarrow2sin4x.cos3x+2sin4x.cosx=0\)

\(\Leftrightarrow sin4x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow sin4x.cos2x.cosx=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

Lý do chỉ cần 1 pt sin4x=0 do sin4x bao hàm cả cosx và cos2x ở trong đó

28 tháng 7 2020

\(sin3x\left(cosx-sin3x\right)+cos3x\left(sinx-cos3x\right)=0\\ \Leftrightarrow sin3x\cdot cosx+cos3x\cdot sinx=sin^23x+cos^23x\\ \Leftrightarrow sin4x=1=sin\frac{\pi}{2}\\ \Leftrightarrow4x=\frac{\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}\)

25 tháng 8 2019

1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)

=> a^2 + b^2 =4 > c^2 = 2

Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:

<=> 1/2cos7x - √3/2 sin7x = -√2/2

<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)

<=> sin(π/6 - 7x) = sin(-π/4)

<=> π/6 - 7x = -π/4 + k2π

hoặc (k∈Z)

π/6 - 7x = π + π/4 + k2π

<=> x = 5π/84 + k2π/7

hoặc (k∈Z)

x = -13π/84 + k2π/7

25 tháng 8 2019

1) b) Ta có:

* 2π/5 < x < 6π/7

<=> 2π/5 < 5π/84 + k2π/7 < 6π/7

<=> 143π/420 < k2π/7 < 67π/84

<=> 143/120 < k < 67/24

=> k ϵ {2}

=> x = 53π/84

* 2π/5 < x < 6π/7

<=> 2π/5 < -13π/84 + k2π/7 < 6π/7

<=> 233/120 < k < 85/24

=> k ϵ {2; 3}

=> x = 5π/12 ; x = 59π/84

Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.