K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2020

c.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(8x+\frac{2\pi}{3}\right)=\frac{1}{2}-\frac{1}{2}cos\left(\frac{14\pi}{5}-2x\right)\)

\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(2\pi+\frac{4\pi}{5}-2x\right)\)

\(\Leftrightarrow cos\left(8x+\frac{2\pi}{3}\right)=cos\left(\frac{4\pi}{5}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}8x+\frac{2\pi}{3}=\frac{4\pi}{5}-2x+k2\pi\\8x+\frac{2\pi}{3}=2x-\frac{4\pi}{5}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{75}+\frac{k\pi}{5}\\x=-\frac{11\pi}{45}+\frac{k\pi}{3}\end{matrix}\right.\)

NV
16 tháng 9 2020

a.

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cos4x=\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{2\pi}{3}\right)\)

\(\Leftrightarrow cos4x=-cos\left(2x+\frac{2\pi}{3}\right)\)

\(\Leftrightarrow cos4x=cos\left(\frac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{3}-2x+k2\pi\\4x=2x-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k\pi}{3}\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

b.

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos\left(10x+\frac{2\pi}{3}\right)-\frac{1}{2}-\frac{1}{2}cos\left(6x+\frac{\pi}{2}\right)=0\)

\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=-cos\left(6x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow cos\left(10x+\frac{2\pi}{3}\right)=cos\left(\frac{\pi}{2}-6x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}10x+\frac{2\pi}{3}=\frac{\pi}{2}-6x+k2\pi\\10x+\frac{2\pi}{3}=6x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{96}+\frac{k\pi}{8}\\x=-\frac{7\pi}{24}+\frac{k\pi}{2}\end{matrix}\right.\)