Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Thể tích của mỗi thỏi son hình trụ là:
V = π r 2 h = 20 , 25 π ⇔ r 2 h = 20 , 25 ⇔ h = 20 , 25 r 2
Ta có:
T = 60000 r 2 + 20000 r h = 60000 r 2 + 20000 r . 20 , 25 r 2 = 60000 r 2 + 405000 r
60000 r 2 + 202500 r + 202500 r ≥ 3 60000 r 2 . 202500 r . 202500 r 3 = 405000
Dấu “=” xảy ra khi:
60000 r 2 = 202500 r ⇔ r = 3 2 ⇒ h = 9 ⇒ r + h = 10 , 5 c m
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
\(\left(1-2x\right)^3=\left(-2\right)^3\)
\(1-2x=-2\)
\(-2x=-2-1\)
\(-2x=-3\)
\(x=\frac{-3}{-2}=\frac{3}{2}\)
\(\left(1-2x\right)^3=-8\)
\(\left(1-2x\right)^3=\left(-2\right)^3\)
\(\Rightarrow1-2x=-2\)
\(2x=3\)
\(x=\frac{3}{2}\)
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/
Đáp án đúng : B