K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Tần số góc: \(\omega = 2\pi/T = 4\pi (rad/s)\)

Độ cứng lò xo: \(k=m.\omega^2=0,4.(4\pi)^2=64(N/m)\)

Lực đàn hồi cực đại tác dụng vào vật: \(F_{dhmax}=k.A = 64.0,08=5,12N\)

25 tháng 4 2019

Tan so goc:=2 π/T=4π (rad/s)

Do cung lo xo:k=m.w2=0,4.(4π)2 =64(N/m)

Luc dan hoi cuc dai tac dung vao vat:

Fd/max=K..A=64.0,08=5,12N

29 tháng 8 2016

Năng lượng dao động: \(W=\dfrac{1}{2}kA^2=2.10^{-2}\) (1)

Lực đàn hồi cực đại: \(F_{dhmax}=k(\Delta \ell_0+A)=4\) (2)

Lực đàn hồi khi ở VTCB: \(F_{cb}=k.\Delta\ell_0=2\) (3)

Từ (2) và (3) suy ra: \(k.A=2\) (4)

Thế (4) vào (1) suy ra: \(A=2.10^{-2}m=2cm\)

2 tháng 1 2017

Vật kéo xuống 5cm từ VTCB và thả không vận tốc đầu nên A=5cm

\(\Delta l_0=\frac{mg}{k}=0,05\left(m\right)=5\left(cm\right)\)

Nhận thấy \(A=\Delta l_0\) nên:

+) \(F_{min}=0\left(N\right)\)

+) \(F_{max}=k\left(\Delta l_0+A\right)=40\left(0,05+0,05\right)=4\left(N\right)\)

18 tháng 7 2020

\(x_1^2+\frac{v_1^2}{\omega^2}=x_2^2+\frac{v_2^2}{\omega^2}\Rightarrow\omega=\sqrt{\frac{v_2^2-v_1^2}{x_1^2-x_2^2}}=10\pi\)

Do pt của 4 ngoại lực có biên độ bằng nhau, để con lắc dao động với biên độ nhỏ nhất trong giai đoạn ổn định thì \(\left|\omega-\omega_F\right|\) là lớn nhất

\(\Rightarrow\) Đáp án B đúng (không chắc lắm :( )

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cmcon lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuônggóc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:A. 17 mV                        B. 21mV  ...
Đọc tiếp

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cm

con lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuông

góc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:

A. 17 mV                        B. 21mV                    C. 8,5 mV                         D. 10,5 mV

-trong sách giải có trình bày như này ạ: 

              Suất điện động trên dây kim loại:  e= Blvsin\(\alpha\)  với anpha (B,v) = 90 độ 

               vmax = \(\sqrt{gl}\alpha_0\) = 0,21 m/s 

               suy ra emax = Blvmax = 0,021 V

-em tham khảo trên mạng dạng bài tương tự thì thấy có ghi

      e=\(\frac{Bl^2w}{2}\)

     emax khi wmax            suy ra     wmax=\(\frac{v_{max}}{R}=\frac{\sqrt{2gl\left(1-cos\alpha_0\right)}}{l}\)      thay số tính ra e = 10,5 mV

Vậy cách làm nào mới đúng vậy thầy.

1
31 tháng 5 2016

Cách thứ 2 mới đúng em nhé. 

Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.

Mình giải thích thêm về công thức trên như sau.

Ta có suất điện đọng tính bởi :

\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)

Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)

\(e_{max}\) khi \(\omega_{max}\), với  \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)

Thay vào trên ta tìm đc \(e_{max}\)

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

22 tháng 9 2015

em gửi nhầm bài. bài này hôm trước thầy trả lời r. ~~

6 tháng 8 2016

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\)\(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng

\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:

\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)

\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).

Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

7 tháng 8 2016

Thanks nhìu

15 tháng 7 2016

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.

Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)

Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)

\(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)

+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)

\(\Rightarrow A = 5cm\)

+ Ban đầu ta có \(x_0=3cm\)\(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)

\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)

\(\Rightarrow \varphi \approx0,3\pi(rad)\)

Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)

28 tháng 3 2019