Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cảm ơn bạn nhé đúng lúc mình đang cần mình sắp thi học sinh giỏi môn Toán nên cần gấp những kiến thức này cảm ơn bạn nhiều nhé
hhhhhhhhhhhhrfbgnjyhmdnyzjh6j6hdrj6hfxtnyth7rfgnyhettfrhtncnhbtznfgftfxxvbhmzcxvnxnnnnnnnnnxyfh8wgcg8xfvbcsygfxcrhdty6rg56dberxfhtgbfvhg$RTF$retr3gs35tfg5r4fnBTRFGN^TgtgyndzdttgyntbbrFTG%dregbfgntxby6gzngtxygzrgjhntgrrtrt%$$%RTGNTGNR$TGBNGBNDTGGRT^HHH$URN&RHNH&YRNB
tiếc quá chị ơi , em cũng muốn tìm người bạn. nhưng em mới lớp 7 thôi. hay chị em mình làm bạn nhé.
Cs này sợ nó khác. Các dạng bài này Milk ôn hồi tr vào cấp 3 nhưng h vẫn còn giữ lại.
Kiến trúc dạng đề ôn như vầy:
DẠNG I : Rút gọn biểu thức
VD:
A=.......
Sau đó thường sẽ pải thục hiện:
+Rút gọn biểu thức đó
+Chứng minh 0< C<1
+Tính giá trị của x=...
+..
DẠNG II: Giải phương trình-Hệ Phương trình
Trong dạng này thường giải các bài toán về Giải pương trình, hệ phương trình và bất phương trình.\
Chúc hc tốt!
Có j sai cho xl
~LucMilk~
tth giờ chuyển sang hình rồi à :))
Câu 2:
Kẻ đường cao AG, BE, CF của tam giác ABC.
Dễ thấy tứ giác HKMG, HECG nội tiếp.
Do đó AK . AM = AH . AG = AE . AC. Suy ra tứ giác KECM nội tiếp.
Tương tự tứ giác KFCM nội tiếp.
Do đó \(\widehat{BKC}=\widehat{BKM}+\widehat{CKM}=\widehat{BFM}+\widehat{CEM}=\widehat{ABC}+\widehat{ACB}=\widehat{BHC}\). Suy ra tứ giác BHKC nội tiếp.
Ta có \(\widehat{BLC}=\widehat{BKC}=\widehat{BHC}=180^o-\widehat{BAC}\) nên tứ giác ABLC nội tiếp.
b) Ta có tứ giác KECM nội tiếp nên \(\widehat{MKC}=\widehat{MEC}=\widehat{ACB}\). Do đó \(\Delta MKC\sim\Delta MCA\left(g.g\right)\).
Suy ra \(\widehat{KCM}=\widehat{KAC}\Rightarrow\widehat{LAB}=\widehat{LCB}=\widehat{KCB}=\widehat{KAC}\).
c) Ta có kq quen thuộc là \(\Delta LMB\sim\Delta LCA\).
Kẻ tiếp tuyến Lx của (ABC) sao cho Lx nằm cùng phía với B qua AL.
Ta có \(\widehat{ALx}=\widehat{ACL}=\widehat{LMX}\Rightarrow\) Ax là tiếp tuyến của (LXM).
Do đó (ABC) và (LXM) tiếp xúc với nhau.
Ta có AI . AX = AH . AG = AK . AM nên I, X, M, K đồng viên.
Ta có kq quen thuộc là (HBC) và (ABC) đối xứng với nhau qua BC.
Lại có (IKMX) và (LMX) đối xứng với nhau qua BC.
Suy ra (HC) và (IKMX) cũng tiếp xúc với nhau.
Câu 1 :
a Ta có \(\Lambda CHE\), \(\Lambda HDB\) là các góc chắn nửa đường tròn đường kính HC;HB \(\Rightarrow\Lambda CHE=\Lambda HDB=90^0\) Mà \(\Lambda CHE+\Lambda AEH=180^0\Rightarrow\Lambda HDB+\Lambda AEH=180^0\Rightarrow\) Tứ giác ADHE nội tiếp
b Từ câu a ta có: tứ giác ADHE nt \(\Rightarrow\Lambda IEH=\Lambda DEH=\Lambda DAH=\Lambda BAH\) Mà \(\Lambda BAH=\Lambda BHD=\Lambda IHD\)( cùng phụ với góc ABH)
\(\Rightarrow\Lambda IEH=\Lambda IHD\) Lại có \(\Lambda EIH=\Lambda HID\) \(\Rightarrow\Delta IEH\sim\Delta IHD\left(g.g\right)\Rightarrow\dfrac{IH}{ID}=\dfrac{IE}{IH}\Rightarrow IH^2=ID\cdot IE\)
c Gọi giao điểm của BM với AC là K; CN với AB là J
Từ câu a ta có tứ giác ADHE nt \(\Rightarrow\Lambda KAH=\Lambda EAH=\Lambda DEH=\dfrac{1}{2}sđMH\) Mà \(\Lambda MHA=\dfrac{1}{2}sđMH\Rightarrow\Lambda KAH=\Lambda MHA\) Lại có \(\Lambda ABK=\Lambda DMH\left(=\dfrac{1}{2}sđDM\right)\) ; \(\Lambda BAH=\Lambda BHD\) (từ câu b)
\(\Rightarrow\Lambda BAH+\Lambda KAH+\Lambda BAK=\Lambda MHA+\Lambda DMH+\Lambda BHD=\Lambda AHB=90^0\Rightarrow\Lambda BKA=90^0\) \(\Rightarrow\) BK vuông góc với CA tại K\(\Rightarrow BM\) vuông góc với AC tại K(1)
Chứng minh tương tự ta được: CN vuông góc với AB tại J(2)
Xét tam giác ABC có BK vuông góc với CA; CJ vuông góc với AB ; AH vuông góc với BC \(\Rightarrow\) BK;CJ;AH là 3 đường cao của tam giác ABC
\(\Rightarrow BK;CJ;AH\) đồng quy \(\Rightarrow BM;CN;AH\) đồng quy