![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì x^2 + y^2 = 1
=> 1 số trong 2 số trên là 1 và số còn lại là 0
ta có: 0 = 0^2 : 1=1^2
=> x = 0 hoặc 1 , y có giá trị còn lại
=> coi x=1,y=0 vì x và y đều ^2
=> GTLN là : 1^3+0^3=1
Và GTNN là: 1 (tương tự)
Bạn dưới sai rồi nhé ....
\(\left(-1\right)^2+0^2=1\) Nhưng \(\left(-1\right)^3+0^3=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^3 + y^3 = x . x . x + y . y . y
= ( x + y ) . ( x + y ) . ( x + y )
= 1 x 1 x 1
= 1
Vậy GTNN của M = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Mà : x + y = 1
\(\Rightarrow M=x^2-xy+y^2=\frac{1}{2}x^2+\frac{1}{2}x^2-xy+\frac{1}{2}y^2+\frac{1}{2}y^2\)
\(=\frac{1}{2}\left(x^2+y^2\right)+\left(\frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}\right)^2\ge\frac{1}{2}\left(x^2+y^2\right)\)
Ta có : \(x+y=1\)
\(\Leftrightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2+2xy=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)( bước này tự tách từ trên ra nhé )
\(\Rightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\Leftrightarrow x=y\)
Ta lại có : \(M\ge\frac{1}{2}\left(x^2+y^2\right)=\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow x=y=\frac{1}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^3+y^3+xy=\left(x+y\right).\left(x^2-xy+y^2\right)+xy\)
\(=x^2-xy+y^2+xy=x^2+y^2\)( do x + y = 1 )
ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Vậy Min A = 1/2 khi x = y = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Ta có: \(A=x^3+y^3+xy+1=\left(x+y\right)\left(x^2-xy+y^2\right)+xy+1\)
\(=x^2-xy+y^2+xy+1=x^2+y^2+1\)
\(\ge\frac{\left(x+y\right)^2}{2}+1=\frac{1^2}{2}+1=\frac{3}{2}\)(BĐT Cauchy)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Bạn xem lại đề bài, theo mình đề là: Tìm GTNN của A=x3+y3+xy
Ta có: x + y = 1 => x = 1 - y
Khi đó: x3 + y3 = (x + y)(x2 - xy + y2)
= 1.(x2 - xy + y2) = x2 + 2xy + y2 - 3xy
= (x + y)2 - 3xy = 1 - 3xy
= 1 - 3y(1 - y)
= 1 - 3y + 3y2
= 3(y2 - y + 1/4) + 1/4
= 3(y - 1/2)2 + 1/4 \(\ge\)1/4 \(\forall\)y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}y-\frac{1}{2}=0\\x=1-y\end{cases}}\) <=> \(\hept{\begin{cases}y=\frac{1}{2}\\x=1-\frac{1}{2}=\frac{1}{2}\end{cases}}\)
Vậy Min của x3 + y3 = 1/4 <=> x = y = 1/2
Ta có :
\(x+y=1\)
\(\Leftrightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+2xy+y^2=1\)
\(\Leftrightarrow x^2+y^2=1-2xy\)
Ta lại có :
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=1-2xy-xy=1-3xy=-3xy+1\ge1\)
Dấu '' = '' xảy ra
\(\Leftrightarrow-3xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy...............