Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
ko vì
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Chứng minh bằng cách phản chứng
Giả sử tồn tại số nguyên tố p thõa mãn
Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )
* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn
* Nếu p > 3 , p lẻ
+ ) p = 4k + 1
Ta có : 3 ≡ - 1 ( mod4 )
nên 3p ≡ - 1 ( mod4 )
và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )
Do đó VT ≡ VP ≡ - 1 ( mod4 ) ( vô lí )
+ ) p = 4k + 3
Theo định lí Fermat ta có :
3p ≡ 3 ( modp )
và 19 ( p - 1 ) ≡ - 19 ( modp )
nên VT ≡ - 16 ( modp )
Do đó n2 + 16 \(⋮\) p
Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )
Vậy ta có đpcm
Gỉa sử tồn tại số nguyên p thỏa mãn
Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )
* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn
* Nếu p>3 , p lẻ
+) p=4k +1
Ta có
\(3=-1\left(modA\right)\)
nên : \(3^p=-1\left(modA\right)\)
Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)
Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )
+) p=4k+3
Theo định lí Fermat ta có
\(3^p=3\left(modp\right)\)
và \(19\left(p-1\right)\equiv-19\left(modp\right)\)
nên \(VT\equiv-16\left(modp\right)\)
Do đó : \(n^2+16⋮p\)
-> Ta có : \(4⋮b\)( vô lí )
Vậy ta có đpcm
+ Giả sử các số nguyên tố đều lớn hơn 2 ta có
=> pi = 4n + 1 hoạc pi = 4n + 3
=> pi^2 chia 4 dư 1 hay pi^2 = 1 (mod4)
=> p1^2 + p2^2 + ... + p7^2 = 7 (mod4)
mà 7 = 3(mod4) mặt khác p8^2 = 1 (mod 4)
=> pt VN vậy phải có 1 pi nào đó = 2 giả sử là p1
do 2^2 = 4 là số chẵn và p2^2 + ... + p7^2 là tổng bình phương
của 6 số lẽ nên có tổng phải là số chẵn
=> 2^2 + p2^2 + ... + p7^2 là số chẵn => p8 = 2
=> p2^2 + ... + p7^2 = 0 hay p2 = p3 = .. = p7 = 0
* Vậy pt VN
P/s: Anh/chị tham khảo ở đây nha
chưa hiểu dòng số 5 giải thích giúp mình