Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có
thay a=100..0000{63chu so 0}
ta co
a mu 40 < k > a mu 40 .a
vay khoang cach la 10....000 co 63 chu so 0
suy ra k=100...000 co 62 chu so 0
- Bổ đề 1: Số chính phương không thể có tận cùng là 2; 3; 7; 8.
- Bổ đề 2: Số chính phương chia cho 3 không thể có số dư là 2. (Tự chứng minh 2 bổ đề trên)
Giả sử tồn tại kϵN sao cho 2k+3k là số chính phương.
Đặt k=4t+r với \(a\in N,b\in0,1,2,3\) (0,1,2,3 chỉ là các số đại diện trên tính chẵn lẻ và 0) thì số đang xét có dạng:
\(A=2^k+3^k=2^{4a+b}+3^{4a+b}=16^a.2^b+81^a.3^b\)
Xét 4 trường hợp sau:
- TH1:Với b=0 thì A có tận cùng là 7, trái với bổ đề 1.
- TH2:Với b=2 thì A có tận cùng là 3, trái với bổ đề 1.
- TH3: Với b=1 thì A chia cho 3 dư 2, trái với bổ đề 2.
- TH4: Với b=3 thì A chia cho 3 dư 2, trái với bổ đề 2.
Vậy không tồn tại số nguyên dương k nào để số A là số chính phương
Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.
a/ Với k = 0 thì A = 1 + 1 + 1 + 1 = 4 = 22, là số chình phương, vô lí
Mk sửa thành k thuộc N*, k chẵn
A = 19k + 5k + 1995k + 1996k
A = (...1) + (...5) + (..5) + (...6)
A = (...6) + (...5) + (...6)
A = (...1) + (...6) = (...7), không là số chình phương
b/ B = 20042004k + 2001
Với k = 0, B = 20042004.0 + 2001 = 20040 +2001 = 1 + 2001 = 2002, không là số chính phương
Với k khác 0, cách 1: Vì 2004 chia hết cho 3 => 20042004k chia hết cho 9 mà 2001 chia hết cho 3 mà không chia hết cho 9
=> B chia hết cho 3 mà không chia hết cho 9, không phải số chính phương
Cách 2: B = 20042004k + 2001
B = (20044)501k + 2001
B = (...6)501k + 2001
B = (...6) + 2001
B = (...7), không là số chính phương
Gỉa sử tồn tại k để 2k + 3k là số chính phương
Nếu \(k=4t\) ( t thuộc N*)
thì: \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7 (mâu thuẫn, do số chính phương ko tận cùng = 7)
Nếu \(k=4t+1\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)
Nếu \(k=4t+2\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)
Nếu \(k=4t+3\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)
Vậy không tồn tại k để 2k + 3k là số chính phương
Em mới hc lớp 7 ko biết đúng ko
Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)
Ta có:
\(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)
Suy ra: \(2^k+3^k\equiv5\)(mod 0)
Suy ra: \(n^2\equiv5\)(mod 0)
Mà 5 chia 3 dư 2
Suy ra: \(n^2\)chia 3 dư 2
Sử dụng bổ đề số chính phương chia 3 không thể dư 2
Suy ra: Phản chứng
Vậy không tồn tại ........