\(\frac{1}{a}\) - \(\frac{1}{b}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Giả sử tồn tại 2 số a,b>0 thỏa mãn đẳng thức trên

Ta có: \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Leftrightarrow\left(a-b\right)\left(b-a\right)=ab\)

\(\Leftrightarrow-\left(a-b\right)^2=ab\)

Vì \(-\left(a-b\right)^2\le0\)

Mà a,b > 0 => ab > 0

=>mâu thuẫn

=>giả sử sai

Vậy không tồn tại 2 số a,b>0 thỏa mãn đề bài

1 tháng 7 2018

Vì \(ab>0\)nên tồn tại 1 trong hai trường hợp \(a>b\)và \(b>a\)

Với \(a>b\)ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}< 0\)

\(\frac{1}{a-b}>0\)vì a > b 

Từ các dữ kiện trên thì không thể tồn tại các số a,b

18 tháng 8 2019

\(\frac{a}{2}+\frac{b}{3}=\frac{3a+2b}{6}=\frac{a+b}{5}\)

\(\Rightarrow5\left(3a+2b\right)=6\left(a+b\right)\)

\(\Rightarrow15a+10b=6a+6b\)

\(\Rightarrow15a-6a=6b-10b\)

\(\Rightarrow9a=-4b\)\(\Rightarrow\frac{a}{-4}=\frac{b}{9}\)

Vì -4 < 0 ; 9 > 0 \(\Rightarrow\)a và b trái dấu

Vậy không tồn tại stn a, b 

giả sử : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Rightarrow\left(b-a\right)\left(a-b\right)=ab\)

 Vế trái có giá trị âm vì là tích của 2 số đối nhau khác 0, vế phải có giá trị dương vì là tích của 2 số dương. Vậy không tồn tại 2 số dương a và b khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

Chú ý : Ta cũng chứng minh được rằng không tồn tại hai số a và b khác 0, khác nhau mà \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

.Thật vậy, nếu \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)thì \(\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab\Rightarrow ab-b^2-a^2+ab=ab\Rightarrow a^2-ab+b^2=0\)

\(\Rightarrow a^2-\frac{ab}{2}-\frac{ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}=0\Rightarrow a\left(a-\frac{b}{2}\right)-\frac{b}{2}\left(a-\frac{b}{2}\right)+\frac{3b^2}{4}=0\)

\(\Rightarrow\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\Rightarrow b=0,a=0\)

Nhưng giá trị này làm cho biểu thức không có nghĩa=> điều giả sử sai=> Không tồn tại 2 số dương a và b khác nhau thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

18 tháng 9 2017

KHÔNG TỒN TẠI

18 tháng 9 2017

Mong ác bạn trả lời đầy đủ, có giải thích, mk sẽ k

Giả sử \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)(ĐK: a,b khác 0 và a khác b)

\(\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Rightarrow\left(a-b\right)^2=-ab\)

\(\Rightarrow a^2-ab+b^2=0\)(vô lí,vì \(a,b\ne0\Rightarrow a^2-ab+b^2>0\))

Vậy ko tồn tại a,b thuộc Q+ khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

11 tháng 8 2018

\(\frac{a^4c^3+b^4a^3+c^4b^3}{a^3b^3c^3}\)\(\frac{b^4c+c^4a+a^4b}{abc}\)

\(\Rightarrow\)\(a^4c^3+b^4a^3+c^4b^3\)\(b^4c+c^4a+a^4b\)

\(\Rightarrow\)\(a^4\left(c^3-b\right)+b^4\left(a^3-c\right)+c^4\left(b^3-a\right)\)= 0

suy ra c^3 -b = 0 hoặc a^3 -c = 0 hoặc b^3 -a = 0

suy ra   đpcm

21 tháng 11 2018

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{c}\end{cases}}\)khi đó  xyz=1

đề bài <=> x+y+z =1/x +1/y +1/z => x+y+z =yz+xz+xy

từ đó => xyz+  (x+y+z) -(xy+yz+xz)-1=0    <=> (x-1)(y-1)(z-1)=0

vây tồn tại x=1 =>a=b^3 (đpcm")

12 tháng 9 2017

a) vẫn tồn tại trường hợp

b ) ko tồn tại trường hợp này 

đáp số ;.......

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)