K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

4 nha bn

28 tháng 9 2021

Trả lời :

Có 7 cách chứng minh :

1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó .

2. Chứng minh một điểm thuộc ba đường thẳng đó.

3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.

4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.

5. Sử dụng chứng minh phản chứng

6. Sử dụng tính thẳng hàng của các điểm

7. Chứng minh các đường thẳng đều đi qua một điểm.

~ HT ~

1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó .

2. Chứng minh một điểm thuộc ba đường thẳng đó.

3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.

4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.

5. Sử dụng chứng minh phản chứng

6. Sử dụng tính thẳng hàng của các điểm

7. Chứng minh các đường thẳng đều đi qua một điểm.

12 tháng 11 2019

1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó .

2. Chứng minh một điểm thuộc ba đường thẳng đó.

3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.

4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.

5. Sử dụng chứng minh phản chứng

6. Sử dụng tính thẳng hàng của các điểm

7. Chứng minh các đường thẳng đều đi qua một điểm.

 
 
 
 
 
 
17 tháng 7 2018

1)Điều cần chứng minh : 3 đường trung tuyến của tam giác bất kỳ luôn đồng quy. 
Cho tam giác ABC, trung tuyến AM, lấy điểm G trên AM sao cho AG = 2GM, I là trung điểm AG. 
BG cắt AC tại N. Qua I, M kẻ các đường thẳng song song với BG cắt AC tại K,L (Bạn tự vẽ hình nhé) 
Theo định lý Talét suy ra AK=KN=NL=LC => AN = NC vậy BN là trung tuyến của tam giác ABC 
Chứng minh tương tự ta có nếu CG cắt AB tại P thì CP là trung tuyến của tam giác ABC 
Vậy 3 trung tuyến của tam giác đồng quy. 
2)Phần này đã được chứng minh trong sách giáo khoa 11 trang 44. Trong một số sách tham khảo thì mệnh đề trên được xem như tiên đề. 
3) Bạn không nói rõ là công thức cộng thế nào. Nếu là cos(a+b) SGK có chứng minh rồi bạn ạ. Còn nếu là cos x + cos y = 2cos [(x+y)/2]* cos[(x-y)/2] thì nó được suy ra từ công thức nhân khi ta đặt 
a+b=x và a-b=y trong công thức nhân. Công thức nhân được chứng minh bằng việc cộng hoặc trừ theo về công thức công cos(a+b) với cos(a-b). 
Học toán không chỉ tìm bài toán khó mà suy nghĩ những cái cơ bản cũng cho ta thêm kinh nghiệm, miễn ta yêu thích nó thì không thể nói là phí thời gian được.

7 tháng 8 2019

Mình có cách khác khá dễ nè:) Boul học hình ghê thật:) tới sin cos rồi á?

a: Xét ΔFEB và ΔFDC có

góc FEB=góc FDC

góc F chung

=>ΔFEB đồng dạng với ΔFDC

Xét ΔEAD và ΔEBF có

góc EAD=góc EBF

góc AED=góc FEB

=>ΔEAD đồng dạng với ΔEBF

Xét ΔABD và ΔCDB có

góc ABD=góc CDB

góc A=góc C

=>ΔABD đồng dạng với ΔCDB

Xét ΔABC và ΔCDA có

góc ABC=góc CDA

góc BAC=góc DCA

=>ΔABC đồng dạng với ΔCDA

22 tháng 6 2019

Em tham khảo câu 1 tại link dưới:

Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath