Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Đàn gà có tất cả số con là :
5 x 7 + 5 = 40 ( con )
Đáp số : 40 con
3 con thỏ ứng với số phần thỏ ở chuồng a là:
\(\frac{2}{5}-\frac{1}{3}=\frac{1}{15}\)( số phần thỏ ở chuồng a)
Chuồng a và b có số con là:
\(3:\frac{1}{15}=45\left(con\right)\)
Số thỏ lúc đầu ở chuồng a là:
\(45.\frac{2}{5}=18\left(con\right)\)
Vậy số thỏ lúc đầu ở chuồng a là 18 con
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
1. Lũy thừa với số mũ tự nhiên :
Định nghĩa :
Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
Công thức :
xn = x.x…x (n thừa số).
x Q, n N, n > 1
ta có : a, b Z, b ≠ 0 :
Quy ước :
- x1 = x
- x0 = 1 (x ≠ 0)
2. Các công thức tính : x là số hữu tỉ.
Tích các lũy thừa cùng cơ số :
xm . xn = xm + n
thương các lũy thừa cùng cơ số:
xm : xn = xm – n
lũy thừa của lũy thừa :
(xm)n = xm . n
lũy thừa của một tích :
(x . y)n = xn . yn
lũy thừa của một thương :
(x : y)n = xn : yn
Chuồng 1: __,__,__,__,__,__,__,__,__,__(300 con)
Chuồng 2: __(300:10=30( con))
Chuồng 1: __,__,__,__,__,__,__,__,__.__(300 con)
Chuồng 2: __,__,__,__,__,__,__,__,__,__,__(30+300=330( con))
330/300=110/100
có 8 chuông mỗi chuông nhốt 4 con và còn thừa 3 con
=> đàn gà có số con là: [ 8 x 4 ] + 3 = 35 [ con ]
Đ/S : 35 con gà
Nếu cả chuồng chỉ có heo thì:
72:4=18 (con)
Nếu cả chuồng chỉ có gà thì:
72:2=36(con)
Số gà có trong chuồng là: 36-18=18(con)
Số heo có trong chuồng là: 27-18=9 (con)
Chuồng 1 chuyển sang chuồng 2 5 con thì cả 2 chuồng có số lợn bằng nhau =>lúc đầu chuồng 1 có số lợn nhiều hơn chuồng 2 là 10 con.
Số lợn ở chuồng 1 lúc đầu là :
(30+10):2=20(con lợn)
Số lợn ở chuồng 2 lúc đầu là:
30-20=10(con lợn)
Đ/S