Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).
Theo bài ta có phương trình :
\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)
\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)
\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)
\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)
\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))
\(\Leftrightarrow n=18\)
Vậy đa giác đều có 16 cạnh, (thập lục giác đều)
a) Dễ thấy bất đẳng thức đúng với n = 2
Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là
3k > 3k + 1
Nhân hai vế của (1) vơi 3, ta được:
3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.
Vì 6k - 1 > 0 nên
3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.
tức là bất đẳng thức đúng với n = k + 1.
Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.
b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2
Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là
2k + 1 > 2k + 3 (2)
Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh
2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5
Nhân hai vế của bất đẳng thức (2) với 2, ta được:
2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.
Vì 2k + 1> 0 nên 2k + 2 > 2k + 5
Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.
Điều kiện để (1) có nghĩa là
\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\)
Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z (2)
Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)
\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60 (3)
Vì n\(\ge\)k \(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1
Ta nhận thấy nếu n\(\ge\)4, thì
(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72
Do đó mọi n\(\ge\)4 không thỏa mãn (3)
- Xét lần lượt các khả năng
1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0
Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)
2) Nếu n=1, do 0\(\le\)k\(\le\)n \(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)
Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)
3) Nếu n=2 khi đó:
(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60
\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2
4) Nếu n=3
(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60
\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3
Vậy (1) có các nghiệm (n,k) sau
(0,0), (1,0), (1,1), (2,2), (3,3).
ta có : \(Q=C^1_n+2\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C_n^{k-1}}+...+n\dfrac{C^n_n}{C_n^{n-1}}\)
\(\Leftrightarrow Q=\dfrac{n!}{1!\left(n-1\right)!}+2\dfrac{1!\left(n-1\right)!}{2!\left(n-2\right)!}+...+k\dfrac{\left(k-1\right)!\left(n-k+1\right)!}{k!\left(n-k\right)!}+...+\dfrac{n\left(n-1\right)!1!}{n!}\)
\(\Leftrightarrow Q=n+\dfrac{2\left(n-1\right)}{2}+...+\dfrac{k\left(n-k+1\right)}{k}+...+\dfrac{n}{n}\)
\(\Leftrightarrow Q=n+\left(n-1\right)+...+\left(n-k+1\right)+...+1\)
\(\Leftrightarrow Q=n^2-\left(1+\left(1+1\right)+\left(1+2\right)+...+\left(n-1\right)\right)\)