Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:
\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)
Áp dụng BĐT AM-GM,ta được:
\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{1}{4}.20=13\)
Dấu "=" xảy ra khi a = 2; b=3;c=4
VẬy A min = 13 khi a = 2; b=3;c=4
Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min
Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)
\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)
\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)
Áp dụng BĐT AM-GM:
\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)
Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)
Bài 1
Cho a , b , c > 0 . CM : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}\left(1\right)\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)\le\frac{a\left(a+b\right)\left(b+c\right)}{b}+\frac{b\left(a+b\right)\left(b+c\right)}{c}+\frac{c\left(a+b\right)\left(b+c\right)}{a}\)
\(=\frac{a^2c}{b}+a^2+ab+ac+\frac{b^2\left(a+b\right)}{c}+b^2+ab+c^2+bc+\frac{cb\left(b+c\right)}{a}\)
Mặt khác : \(\left(a+b\right)^2+\left(b+c\right)^2+\left(a+b\right)\left(b+c\right)=a^2+ac+c^2+3b^2+3ab+3bc\)
Do đó ta cần chứng minh :
\(\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}\ge2b^2+2bc+ab\left(2\right)\)
\(VT=\frac{a^2c}{b}+\frac{b^2\left(a+b\right)}{c}+\frac{cb\left(b+c\right)}{a}=\frac{1}{2}\left(\frac{a^2c}{b}+\frac{b^3}{c}\right)+\frac{1}{2}\left(\frac{a^2c}{b}+\frac{c^2b}{a}\right)+\frac{1}{2}\left(\frac{b^3}{c}+\frac{c^2b}{a}\right)+b^2\left(\frac{c}{a}+\frac{a}{c}\right)\)
\(\ge ab+\sqrt{ac^3}+\sqrt{\frac{b^4c}{a}}+2b^2\ge ab+2bc+2b^2=VP\)
Dấu " = " xảy ra khi a=b=c
Bài 2 :
Vì x , y , z > 0 ta có :
Áp dụng BĐT Cô - si đối với 2 số dương \(\frac{x^2}{y+z}\) và \(\frac{y+z}{4}\)
ta được :
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\left(1\right)\) .
Tương tự ta cũng có :
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\left(2\right);\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\Rightarrow P\ge\left(x+xy+z\right)-\frac{x+y+z}{2}=1\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Vậy \(P=1\Leftrightarrow x=y=z=\frac{2}{3}\)
bạn phá đảo BDT rồi làm làm gì nữa nhường cho người khác làm nữa chứ :v
Câu 1:
Áp dụng BĐT Cauchy ta có:
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}=\frac{1}{(x^2+y^2)+(y^2+1)+2}+\frac{1}{(y^2+z^2)+(z^2+1)+2}+\frac{1}{(z^2+x^2)+(x^2+1)+2}\)
\(\leq \frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)
hay \(P\leq \frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)(1)\)
Do $xyz=1$ nên:
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{xy}{xy.yz+xyz+xy}+\frac{y}{yzx+yx+y}\)
\(=\frac{1}{xy+y+1}+\frac{xy}{y+1+xy}+\frac{y}{1+yx+y}=\frac{1+xy+y}{1+xy+y}=1(2)\)
Từ \((1);(2)\Rightarrow P\leq \frac{1}{2}.1=\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z=1$