Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-1/7S=(-1/7)^1+(-1/7)^2+(-1/7)^3+...........+(-1/7)^2008
(-1/7)S-S=[(-1/7)^1+(-1/7)^2+........+(-1/7)^2008]-[(-1/7)^0+(-1/7)^1+.....+(-1/7)^2007]
S(-1/7-1)=(-1/7)^2008-(-1/7)^0
(-8/7)S=(-1/7)^2008-1
S=[(-1/7)^2008-1]:(-8/7)

\(H=\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{2\cdot1}\)
\(U=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{2\cdot1}\right)\)
\(U=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(H=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(HU=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(UH=\frac{1}{100}-1+\frac{1}{100}\)
\(HU=\frac{2}{100}-1=-\frac{49}{50}\)

a. \(\frac{\left(-5\right)^2.20^4}{8^2.\left(-125\right)}=\frac{\left(-5\right)^2.5^4.2^8}{2^6.\left(-5\right)^3}=\left(-5\right)^3.2^2=\left(-125\right).4=-500\)
b, \(\frac{15^{11}.5^7.9^2}{5^{18}.27^6}=\frac{3^{11}.5^{11}.5^7.3^4}{5^{18}.3^{18}}=\frac{3^{15}.5^{18}}{5^{18}.3^{18}}=\frac{1}{3^3}=\frac{1}{27}\)

1)\(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3n-3}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để \(P\in Z\Rightarrow3+\frac{5}{n-1}\in Z\Rightarrow\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)\)
n - 1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy để P nguyên thì \(n\in\left\{-4;0;2;6\right\}\)
2) \(\left(-1,5\right)^2:2\frac{1}{5}-3,15=2,25:2,2-3,15=4,95-3,15=1,8\)

b) Để \(\frac{6}{x+1}.\frac{x-1}{3}\)là một số nguyên =>\(\frac{6.\left(x-1\right)}{\left(x+1\right).3}\)phải là một số nguyên
Ta có:
\(\frac{6.\left(x-1\right)}{\left(x+1\right).3}=\frac{2\left(x-1\right)}{x+1}=\frac{2\left(x+1\right)-3}{x+1}\)=> Để \(\frac{6}{x+1}.\frac{x-1}{3}\)là một số nguyên thì 2(x+1)-3 phải chia hết cho x+1
=> 3 phải chia hết cho x+1
=> x+1 thuộc vào Ư(3)=(1;-1;3;-3)
Ta có bảng
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
Vậy x=0;-2;2;-4 thì thỏa mãn yêu cầu đề bài
Ta có : P = \(\left|a-\frac{1}{2014}\right|+\left|a-\frac{1}{2016}\right|\)
Thay a = \(\frac{1}{2015}\)vào biểu thức P ,ta có :
\(\left|\frac{1}{2015}-\frac{1}{2014}\right|+\left|\frac{1}{2015}-\frac{1}{2016}\right|\)
\(=\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(=\frac{1}{2014}-\frac{1}{2016}\)
\(=\frac{2016-2014}{2014.2016}=\frac{2}{4060224}=\frac{1}{2030112}\)
Vậy P = \(\frac{1}{2030112}\)
phân số
mik quên ko ns, tính đầy đủ ra