K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

Để \(n^2+2002\) là số chính phương thì \(n^2+2002=a^2\)(a là số tự nhiên khác 0)

\(\Rightarrow a^2-n^2=2002\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Do \(2002⋮2\)\(\Rightarrow\left(a-n\right)\left(a+n\right)⋮2\)hay \(a-n⋮2\)hoặc \(a+n⋮2\)hoặc \(\)a-n và a+n đều\(⋮2\)

mà a-n-(a+n)=-2n \(⋮2\)\(\Rightarrow\)a-n và a+n cùng chẵn hoặc lẻ \(\Rightarrow\) a-n; a+n đều \(⋮2\)\(\Rightarrow\)\(\left(a-n\right)\left(a+n\right)⋮4\)

Mà 2002 ko chia hết cho 4 \(\Rightarrow\)ko tồn tại n đẻ n^2+2002 là số chính phương

12 tháng 12 2018

đơngiản tự nghĩ lấy hỏi gì mà hỏi 

5 tháng 4 2016

giả sử n +  2002 = a2

 nếu a và n không cùng tính chẵn lẻ 

 a2 - n2  là số lẻ 

 mà 2002 là số chẵn 

 nên nếu a và n không cùng tính chẵn lẻ thì n2 +2002 ko phải là 1 số chính phương 

nếu a và n cùng tính chẵn lẻ thì a và n khác 2002 ( vì 2002 không chia hết cho 4 mà a2 - n2 chia hết cho 4 )

vậy ko có số nào thích hợp 

5 tháng 4 2016

Gọi số cần tìm là a

ta có n^2+2002=a^2

a^2-n^2=2002

(a-n)(a+n)=2002

do 2002 chia hết cho 2=>a-n hoặc a+n cũng phải chia hết cho 2

mà a-n-(a+n)=-2n chia hết cho 2

=>a-n và a+n là cặp chẵn lẻ=>a-n hay a+n đều chia hết cho 2

mà 2 số đều chia hết cho 2 thì tích của chúng sẽ chia hết cho 4

=>(a-n)(a+n) chia hết cho 4

mà 2002 ko chia hết cho 4

=>ko có số thự nhiên nào để n^2 +2002 là số chính phương

AH
Akai Haruma
Giáo viên
3 tháng 2 2023

Lời giải:
Nếu $n=2k$ với $k$ tự nhiên. Khi đó:

$A=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Nếu $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=3^{2k+1}+4=9^k.3+4\equiv 1^k.3+4\equiv 7\pmod 8$

Mà 1 scp khi chia 8 có dư 0, 1

$\Rightarrow A$ không thể là scp.

17 tháng 3 2016

giả sư tồn tại n sao cho n2+2002 là số chính phương

Đặt n2+2002=m(m thuộc N )

=> m2-n= 2002 => (m+n)(m-n) = 2002 (bất đẳng thức)

vì m-n+m+n = 2m là một số chẵn; mặt khác 2002 chia hết cho 2

=> (m+n)(m-n) chia hết cho 4 mà 2002 không chia hết cho 4 nên không tồn tại n sao cho n2+2002 là số chính phương.

23 tháng 3 2019

ể n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

10 tháng 11 2020

làm siêu đúng luôn

15 tháng 4 2016

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

15 tháng 4 2016

Các cách giải trên nói chung là được và mình cũng muốn đóng góp thêm cách này 

Một tính chất của số chính phương: x^2 chia 4 chỉ có thể dư 0 hoặc 1 (bạn tự chứng minh nha) 
Đặt x^2 + 2002 = y^2 

+ Nếu x^2 chia hết cho 4 => x^2 + 2002 chia 4 dư 2 => y^2 chia 4 dư 2, vô lí vì y^2 chia 4 chỉ có thể dư 0 hoặc 1 

+ Nếu x^2 chia 4 dư 1 => x^2 + 2002 chia 4 dư 3 => y^2 chia 4 dư 3, cũng vô lí nôt 

Vậy pt vô nghiệm 

p/s: ko biết bài này có phải trong đề tuyển sinh TP. HCM năm 2002 - 2003 ko ta?

Đúng không Bùi Minh Quân

20 tháng 2 2023

Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)

A = 2018 + ( 2k+ 1+ 1)2 

A = 2018 + (2k+2)2

A = 2018 + 4.( k+1)2 ⇒ A  ⋮ 2 Nếu A là số chính phương 

⇒ A ⋮ 4 ( tính chất 1 số chính phương ) 

⇒ 2018 ⋮ 4 ( vô lý)

Nếu n là số chẵn  n =2k ( k \(\in\) N)

A = 2018 + ( 2k + 1)2

2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)

A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.

Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương 

 

Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) =  a + n - a +n = 2n ( chia hết cho 2 )

\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ 
Vậy ta kết luận:  2018 + n^2 không là số chính phương