Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi abc là số thỏa mãn đề bài (0<a<9,-1<b,c<9, a,b,c là các số tự nhiên)
Theo đề bài, ta có:abc-cba=k2(là số tự nhiên)
Dễ thấy a\(\ge\)c:
TH1:a=c=>k2=0(thỏa mãn)=>abc={111;212;...;121;222;...;131;231;...)
TH2:a>c. Đặt a=c+k=>abc-cba=[(c+k).100+b.10+c]-(c.100+b.10+c+k)=k.100+k=k0k là số chính phương
Xét số kok=k.101 là số chính phương (Vô lí vì 101 là số nguyên tố)
Vậy các số abc thỏa mãn đề bài là {111;212;...;121;222;...;131;231;...}
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Số chính phương chia hết cho \(3\)thì sẽ chia hết cho \(9\).
Thật vậy, giả sử \(n^2⋮3\Rightarrow n⋮3\Rightarrow n^2⋮3^2\Rightarrow n⋮9\).
Ta có: tổng các chữ số của số đã cho là: \(1995\)có \(1+9+9+5=24\)chia hết cho \(3\)nhưng không chia hết cho \(9\).
Do đó mâu thuẫn với điều ta vừa chỉ ra bên trên.
Do đó không tồn tại số chính phương đó.