K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 1 2021

Số chính phương chia hết cho \(3\)thì sẽ chia hết cho \(9\)

Thật vậy, giả sử \(n^2⋮3\Rightarrow n⋮3\Rightarrow n^2⋮3^2\Rightarrow n⋮9\).

Ta có: tổng các chữ số của số đã cho là: \(1995\)có \(1+9+9+5=24\)chia hết cho \(3\)nhưng không chia hết cho \(9\).

Do đó mâu thuẫn với điều ta vừa chỉ ra bên trên. 

Do đó không tồn tại số chính phương đó. 

19 tháng 8 2016

i do not know

19 tháng 12 2019

i do not know

22 tháng 1 2018

1/28 chu so a

29 tháng 4 2019

Gọi abc là số thỏa mãn đề bài (0<a<9,-1<b,c<9, a,b,c là các số tự nhiên)

Theo đề bài, ta có:abc-cba=k2(là số tự nhiên)

Dễ thấy a\(\ge\)c:

TH1:a=c=>k2=0(thỏa mãn)=>abc={111;212;...;121;222;...;131;231;...)

TH2:a>c. Đặt a=c+k=>abc-cba=[(c+k).100+b.10+c]-(c.100+b.10+c+k)=k.100+k=k0k  là số chính phương

Xét số kok=k.101 là số chính phương (Vô lí vì 101 là số nguyên tố)

Vậy các số abc thỏa mãn đề bài là {111;212;...;121;222;...;131;231;...}

17 tháng 5 2018

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

18 tháng 5 2018

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)