Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
n^2= (2k+1)^2=4k^2+4k+1
k=2t=> 16t^2+8t+1 chia 8 luon du 1
k=(2t+1)=> 4(4t^2+4t+1) +4(2t+1)+1=16t^2+24t+8+1 chia 8 du 1
ket luan: so du n^2 chia 8 luon du 1
a^2+b^2-c^2=2016=2^3.3^2.23
4m^2+4m+4n^2+4n-4p^2-4p+2=2016
2(m^2+m+n^2+n-p^2-p)+1=1008 => khong ton tai
VP chan VT luon le
cho a,b,c là 3 số tự nhiên thoả mãn a + b +c chia hết cho 2 chứng minh a^2 + b^2 +c^2 chia hết cho 2
Ta có: a + b + c \(⋮\)2
Vì các số có số mũ là 2 thì luôn là số chẵn => luôn chia hết cho 2.
Nên: a2 \(⋮\)2; b2 \(⋮\)2; c2 \(⋮\)2.
Mà cả a2, b2, c2 đều chia hết cho 2 nên a2 + b2 + c2 \(⋮\)2
( Nếu ko đúng thì thôi nhá, mình chỉ nghĩ là như zậy thoi ) :(((