![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)
Ta có
\(x^2+y^3+z^4=90\)
\(\Rightarrow z^4< 90\)
Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được
Hay z nhận các giá trị là 1, 2, 3
Với z = 3 thì
\(x^2+y^3=90-3^4=9\)
Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2
Thế vô lần lược tìm được: y = 2, x = 1
Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại
Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)
Mình chỉ hướng dẫn bạn cách làm thôi nhé.
Vì x,y,z là các số nguyên dg nên x,y,z >/1
Ta có : x2 +y3 +z4 = 90
Suy ra z4 < 90
Ta thấy rằng {42 = 256 > 90 , 34 = 81 < 90 nên z ko thể >4
Hay z nhận các gt là 1,2,3
Với z=3 thì :
x2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tham khảo ở đây nhé
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
Không có vì 20073 có tận cùng là 3 mà 3 số chính phương khác nhau không thể có tổng là một số có tận cùng là 3.
Không có vì 20073 có tận cùng là 3 mà 3 số chính phương khác nhau không thể có tổng là một số có tận cùng là 3.