Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Giả sử pt có nghiệm $(x,y)$ nguyên dương.
$ax+by=ab\vdots a$
$\Rightarrow by\vdots a$. Mà $(a,b)=1$ nên $y\vdots a$
$ax+by=ab\vdots b\Rightarrow ax\vdots b\Rightarrow x\vdots b$
Đặt $y=am, x=bn$ với $m,n$ nguyên.
Vì $x,y$ nguyên dương, $a,b$ lại là stn khác 0 nên $m,n$ nguyên dương.
Khi đó: $ab=ax+by=abn+bam=ab(m+n)$
$\Rightarrow 1=m+n$
Vì $m,n$ nguyên dương nên $m+n\geq 2$. Do đó việc $m+n=1$ vô lý.
Vậy điều giả sử là sai. Tức là không tồn tại $x,y$ nguyên dương.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Gọi hai số cần tìm là 2k;2k+2
Theo đề, ta có:
\(\left(2k+2\right)^3-8k^3=2012\)
\(\Leftrightarrow24k^2+24k+8=2012\)
\(\Leftrightarrow24k^2+24k-2004=0\)
\(\Leftrightarrow2k^2+2k-167=0\)
=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên
d: \(a^3+b=14\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)
=>ab=-1
\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)
\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)
\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)
\(\Leftrightarrow a^5+b^5=54\)
Cho a,b là các số nguyên dương và A =\(\frac{a^2+b^2}{ab+1}\)là số nguyên .cmr A là số chính phương.
![](https://rs.olm.vn/images/avt/0.png?1311)