Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{{13}}{5} = \frac{{26}}{{10}} = 2,6\)
Ta thấy \(2,75 > 2,6\) nên số đo chiều cao của tầng hầm được chọn là: 2,75m
Chiều cao tầng hầm B2 là:
\(2,7.\frac{4}{3} = \frac{{18}}{5} = 3,6\,\,(m)\)
Chiều cao tầng hầm của toà nhà so với mặt đất là:
\(2,7 + 3,6 = 6,3\,\,(m)\)
Vì hiện nay không lưu hành tờ tiền dưới 500 đồng nên cô Hạnh không thể trả chính xác 574 880 đồng
- Nếu chọn đề nghị thứ nhất thì đề nghị thứ hai bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ nhất.
- Nếu chọn đề nghị thứ hai thì đề nghị thứ nhất bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ hai.
- Nếu chọn đề nghị thứ ba thì đề nghị thứ tư bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ ba.
- Nếu chọn đề nghị thứ tư thì đề nghị thứ ba bị bác bỏ hoàn toàn. Vậy không thể chọn đề nghị thứ tư.
- Nếu chọn đề nghị thứ năm thì cả 4 đề nghị trên đều thoả mãn một phần và bác bỏ một phần. Vậy thầy Hùng và cô Hạnh đi nghỉ mát trong kì nghỉ đó.
⇒
a) Vì \(\Delta ABC\) cân tại A nên AB = AC
Vì AH là đường trung tuyến của tam giác ABC nên BH = HC = \(\dfrac{1}{2}\). BC
Xét \(\Delta ABH\) và \(\Delta ACH\) có:
AH chung
AB = AC
BH = HC
\(\Rightarrow \Delta ABH=\Delta ACH\) (c.c.c)
\(\Rightarrow \widehat{AHB}=\widehat{AHC}\) ( 2 góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^0\)
\(\Rightarrow \widehat{AHB}=\widehat{AHC}=180^0 : 2 = 90^0\)
Vậy AH có vuông góc với BC.
b) Vị trí O ở độ cao so với mặt đất bằng độ cao ba tầng cộng với khoảng cách OH.
Độ cao ba tầng của tòa nhà bằng \(3,3.3 = 9,9\)(m).
Mà O là trọng tâm tam giác ABC nên \(OH = \dfrac{1}{3}AH\). Vậy \(OH = \dfrac{1}{3}.1,2 = 0,4\)(m).
Vậy vị trí O ở độ cao: \(9,9 + 0,4 = 10,3\)m so với mặt đất.
Dữ liệu cuối cùng nhìn khó hiểu thế em? là phân số, số thập phân em ơi?
vì 5/2 = 2,5 nên những số đo chiều cao của tầng hầm phù hợp với dự định của cô Hạnh là: 2,56m;2,59m;2,6m.