![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
= \(\left(m^2+4m+3\right)\left(m^2+4m+3+32m+320\right)+35^3=\)\(\left(m^2+4m+3\right)^2+32\left(m+10\right)\left(m^2+4m+3\right)+35^3=\)\(\left(m^2+4m+3\right)^2+2.\left(16m+160\right)\left(m^2+4m+3\right)+\left(16m+160\right)^2-\)\(\left(16m+160\right)^2+35^3=\)
\(\left(m^2+4m+3+16m+160\right)^2-\left(16m+160\right)^2+35^3=\)
\(\left(m^2+20m+163\right)^2-16^2\left(m+10\right)^2+35^3=\)\(\left[\left(m+10\right)^2+63\right]^2-256\left(m+10\right)^2+35^3.\)(1)
Đặt (m+10)2 = a( m thuộc N lên a \(\ge10^2=100\))
(1) <=> (a+63)2 -256a + 353 = a2 -130a +632+353 = (a-65)2 + 42619 = K2 (K \(\in N\))
<=> K2- (a-65)2 =42619 <=> (K-a+65)(K+a-65) = 17.23.109
Với a\(\ge10=>K+a-65>K-a+65\)
=> \(\hept{\begin{cases}K+a-65=17.23.109\\K-a+65=1\end{cases};\hept{\begin{cases}K+a-65=23.109\\K-a+65=17\end{cases};\hept{\begin{cases}K+a-65=17.109\\K-a+65=23\end{cases}}}};\)\(\hept{\begin{cases}K+a-65=17.23\\K-a+65=109\end{cases}}\)
giải \(\hept{\begin{cases}K+a-65=17.23.109\\K-a+65=1\end{cases}}\)trừ vế theo vế ta được 2a -2.65=42618 <=> a = 21374 = (m+10)2
dễ thấy 21374 chia hết cho 2 nhưng không chia hết cho 4 nên 21374 không phải là số chính phương => không có m thỏa mãn
giải tương tự các hệ phương trình còn lại ta cũng không tìm được m thỏa mãn
Vậy không có m thỏa mãn.
(có ai giải khác chỉ mình với)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}=\dfrac{4}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3.1}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=\frac{-27}{ }\)
\(2^{27}=\left(2^3\right)^9=8^9\)
\(3^{18}=\left(3^2\right)^9=9^9\)
b) Vì 9 > 8 => 89 < 99
Vậy \(2^{27}<3^{18}\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.3^6}{3^5.2^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}=\frac{3}{16}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cả 3 số 86;920;1018 đều là số chính phương