K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

\(\left\{{}\begin{matrix}-a-b=2\\a+b=2\end{matrix}\right.\left\{{}\begin{matrix}zôlý\\a=1;b=1\end{matrix}\right.\)

23 tháng 2 2022

à có một cặp em nha 

đó là cặp :( a= 1 và b=1)

13 tháng 12 2022

a, để A = \(\dfrac{2}{x+5}\) ϵ Z thì 2 ⋮ x + 5

x + 5  ϵ Ư(2) = { -2; -1; 1; 2)

x ϵ {  -7; -6; -4; -3}

b, để B = \(\dfrac{2x-3}{x+1}\) ϵ Z thì  2x - 3  ⋮ x + 1 ⇔ 2(x+1) - 5 ⋮ x + 1

x + 1  ϵ Ư(5) ={ -5; -1; 1; 5)

x ϵ { -6; -2; 0; 4}

 

18 tháng 4 2020

chỗ 5ax^2 rồi nhân tiếp với 2y^2 hả bạn hay là mũ tiếp

18 tháng 4 2020

\(M=5ax^2y^2+\left(-\frac{1}{2}ax^2y^2\right)+7ax^2y^2+\left(-ax^2y^2\right)\)

\(M=\left(5a+\left(-\frac{1}{2}a\right)+7a+\left(-a\right)\right)x^2y^2\)

\(M=-\frac{23}{2}ax^2y^2\)

a) Ta có : \(x^2y^2=\left(xy\right)^2\)luôn dương với mọi x và y ( vì có số mũ chẵn )

Để M < 0 => \(-\frac{23}{2}a\)âm

\(-\frac{23}{2}\) mang dấu ( - ) mà   \(-\frac{23}{2}a\)âm => a dương => a > 0

Vậy a > 0 thì M < 0 với mọi x và y

b) Từ ý a) ta có M < 0 khi a > 0

mà a = 2 => a > 0

=> M < 0 

=> \(M\ne84\)

=> Không có cặp (x,y) thỏa mãn đề bài

* K chắc nha *

4 tháng 8 2023

Để x là số nguyên thì 3a - 2 ϵ Ư(2) = {1; -1; 2; -2}.

Lập bảng

3a - 2 1 -1 2 -2
a 1 \(\dfrac{1}{3}\) (loại) \(\dfrac{4}{3}\) (loại) 0

a) Để x là số nguyên dương thì 3a - 2 phải là số nguyên dương. Vậy để x là số nguyên dương thì a = 1.

b) Để x là số nguyên âm thì 3a - 2 phải là số nguyên âm. Vậy để x là số nguyên âm thì a = 0.

28 tháng 7 2016

a, \(\frac{2b+1}{10}=\frac{1}{a}\)

  \(\Leftrightarrow\left(2b+1\right)a=10\)

  \(\Leftrightarrow2ab+a=10\)

  \(\Leftrightarrow2ab=10-a\)

  \(\Rightarrow\begin{cases}a=2\\b=2\end{cases}\)

b, \(\frac{a}{4}-\frac{1}{2}=\frac{3}{b}\)

  \(\Leftrightarrow\frac{a-2}{4}=\frac{3}{b}\)

  \(\Leftrightarrow\left(a-2\right)b=12\)

   \(\Rightarrow a-2=12b\)

   Bạn thế a vô rồi tính b chẳng hạn : \(\begin{cases}a=14\\b=1\end{cases}\)

21 tháng 9 2020

\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)

Bạn tự làm nốt