\(b\le c\Rightarrow a^2\left(b-c\right)\le0 \)
\(y^2\left(z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

Câu 19 , Đăk Lắk Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)                                 GiảiĐặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)             ...
Đọc tiếp

Câu 19 , Đăk Lắk 

Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)

Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)

                                 Giải

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)

Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)

               \(=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ac}{ac+2b}}\)

               \(=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}+\sqrt{\frac{bc}{bc+\left(a+b+c\right)a}}+\sqrt{\frac{ac}{ac+\left(a+b+c\right)b}}\)

              \(=\sqrt{\frac{ab}{ab+ac+bc+c^2}}+\sqrt{\frac{bc}{bc+a^2+ab+ac}}+\sqrt{\frac{ac}{ac+ab+b^2+bc}}\)

             \(=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ac}{\left(a+b\right)\left(b+c\right)}}\)

            \(\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}+\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}+\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\left(Cauchy\right)\)

             \(=\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)

             \(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" tại a = b = c

20, Thanh hóa

Cho a;b;c > 0 thỏa abc = 1

CMR \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{a^4+c^4+ac}\le1\)

                                   Giải

Áp dụng bất đẳng thức Bunhiacopxki có

\(\left(a^2+b^2\right)^2\le\left(1+1\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)

\(\Rightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)

Khi đó \(\frac{ab}{a^4+b^4+ab}\le\frac{ab}{ab\left(a^2+b^2\right)+ab}=\frac{1}{a^2+b^2+1}\)

Chứng minh tương tự \(\frac{bc}{b^4+c^4+bc}\le\frac{1}{b^2+c^2+1}\)

                                   \(\frac{ac}{a^4+c^4+ac}\le\frac{1}{a^2+c^2+1}\)

Khi đó \(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{a^2+c^2+1}=A\)

Ta sẽ chứng minh A < 1

Thật  vậy

Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x^3;y^3;z^3\right)\)

\(\Rightarrow xyz=1\)

Khi đó \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

Áp dụng bđt Cô-si có \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow x^3+y^3\ge\left(x+y\right)xy\)

\(\Rightarrow x^3+y^3+1\ge\left(x+y\right)xy+1=\left(x+y\right)xy+xyz=xy\left(x+y+z\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}=\frac{xyz}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Chứng minh tương tự \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)

                                    \(\frac{1}{x^3+z^3+1}\le\frac{z}{x+y+z}\)

Khi đó \(A\le\frac{x+y+z}{x+y+z}=1\left(đpcm\right)\)

Dấu "=" tại x = y = z = 1

Đang trong quá trình cập nhật những câu tiếp theo , những câu tiếp theo sẽ ở trong phần bình luận

3
21 tháng 6 2019

34, Quảng Ninh

Cho x;y;z > 0 thỏa mãn x + y + z < 1

Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)

Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

                                \(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)

                                \(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)

                               \(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)

                                \(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)

Dấu "=" tại x = y = z = 1/3

21 tháng 6 2019

39, Chuyên Hưng Yên

Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)

Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

              \(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt  \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)

Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)

Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)

Thật vậy

 \(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

         \(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt luôn đúng

*Nếu xz + yt > 0 thì bđt tương đương với

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

 \(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)

Vậy bđt (1) được chứng minh

Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

                                                                                              \(=\sqrt{\left(a^2+b^2\right)^2+4}\)

Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)

                                   \(2\left(a^2+\frac{1}{4}\right)\ge2a\)

                                  \(2\left(b^2+\frac{1}{4}\right)\ge2b\)

Cộng 3 vế vào được

\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)

Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)

V
16 tháng 12 2018

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

16 tháng 12 2018

J VẠI MÁ V

22 tháng 6 2020

Theo AM - GM và Bunhiacopski ta có được 

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)

Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)

\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)

Đặt \(t=\frac{z}{x+y}\ge1\)

Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)

\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)

Vậy ta có đpcm

23 tháng 6 2020

Ta có:

\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)

Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\) 

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\). Vậy ta cần chứng minh

\(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\), ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng. Vậy ta có đpcm

24 tháng 11 2016

1) BĐT chứng minh (x2y2+y2x2)212⇔∑(x2y2+y2x2)≥212
Ta có x2y2+y2x22x2y2+y2x2≥2
Ta sẽ đi chứng minh y2z2+z2y2+z2x2+x2z2172y2z2+z2y2+z2x2+x2z2≥172
Ta có y2z2+x2z212(xz+yz)2y2z2+x2z2≥12(xz+yz)2
z2y2+z2x212(4zx+y)2z2y2+z2x2≥12(4zx+y)2
Đặt a=zx+y1a=zx+y≥1
Ta sẽ chứng minh 12a2+8a217212a2+8a2≥172
Dễ thấy bđt này đúng suy ra đpcm

3 + (x²/y² + y²/x²) + (x²/z² + y²/z²) + (z²/x² + z²/y²) 
x²/y² + y²/x² ≥ 2 (Theo AM - GM) 
Nên A ≥ 5 + (x²/z² + y²/z²) + (z²/x² + z²/y²) 
Sử dụng 2 BĐT quen thuộc sau: 
a² + b² ≥ (1/2)*(a + b)² 
1/a + 1/b ≥ 4/(a + b) 

Đề thi vào lớp 10 môn Toán tỉnh Nghệ An năm 2014

https://thi.tuyensinh247.com/de-thi-vao-lop-10-mon-toan-tinh-nghe-an-nam-2014-c29a17566.html

Vào đó xem cho nó full :)))

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)

Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng.Vậy ta có đpcm