Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do số đã cho là số lẻ nên ko chia hết cho 2
Do số đã cho có tận cùng khác 0, 5 nên ko chia hết cho 5
Gọi p là 1 số nguyên tố nào đó, với \(p\ne\left\{2;5\right\}\) \(\Rightarrow2^x.5^y\) nguyên tố cùng nhau p
\(\Rightarrow10^z\) nguyên tố cùng nhau với p với mọi z nguyên dương
Ta xét dãy gồm p+1 số có dạng:
1; 11; 111; ...; 111...11 (p+1 chữ số 1)
Theo nguyên lý Dirichlet, trong p+1 số trên có ít nhất 2 số có cùng số dư khi chia hết cho p
Giả sử đó là 111..11 (m chữ số 1) và 111...11 (n chữ số 1), với \(m< n\le p\)
\(\Rightarrow111...11\left(n\text{ chữ số 1}\right)-111...11\left(m\text{ chữ số 1}\right)\) chia hết cho p
\(\Rightarrow111...11000...00\left(a\text{ chữ số 1}\text{ và b chữ số 0}\right)\) chia hết cho p (với a<m)
\(\Rightarrow111...11.10^b\) chia hết cho p
Mà \(10^p\) nguyê tố cùng nhau với p
\(\Rightarrow111...11\left(a\text{ chữ số 1}\right)\) chia hết cho p
Vậy với mọi số nguyên tố p khác 2 và 5, luôn luôn tìm được ít nhất 1 số có dạng 111...11 chia hết cho p
\(\Rightarrow\) Mọi số nguyên tố, trừ 2 và 5, đều có thể là ước của số có dạng 111...11
a/Hệ số tỉ lệ là k = -16
b/Thay x = -4 vào công thức \(y=\dfrac{-16}{x}\), ta có:
\(y=\dfrac{-16}{-4}=4\)
Vậy khi x = -4 thì y = 4
Thay x = 8 vào công thức \(y=\dfrac{-16}{x}\), ta có:
\(y=\dfrac{-16}{8}=-2\)
Vậy khi x = 8 thì y = -2
#DarkPegasus
a: k=-16
b: Khi x=-4 thì y=-16/-4=4
Khi x=8 thì y=-16/8=-2
a) Ta có: x\(\in\) Z- \(\Leftrightarrow\) x<0 \(\Leftrightarrow\) a-202021<0 \(\Leftrightarrow\) a<202021
Mà a\(\in\) Z+nên 0<a<202021
\(\Rightarrow\) Tập hợp S có (202020-1):1+1=202020 phần tử
b)Ở số đầu tiên của tập hợp có 202020 cách
..........sau............................có 202019 cách
Có số tập hợp con cúa S có 2 phần tử là
202020x202019
Giả sử bốn số nguyên tố đó là \(p_1,p_2,p_3,p_4\).
Khi đó các số đã cho đều viết được dưới dạng \(p_1^{a_1}p_2^{a_2}p_3^{a_3}p_4^{a_4}\) với \(a_1,a_2,a_3,a_4\) là các số tự nhiên.
Theo nguyên lí Dirichlet, tồn tại 9 số có hệ số \(a_1\) cùng tính chẵn, lẻ.
Trong 9 số này, tồn tại 5 số có hệ số \(a_2\) cùng tính chẵn, lẻ.
Trong 5 số này, tồn tại 3 số có hệ số \(a_3\) cùng tính chẵn, lẻ.
Trong 3 số này, tồn tại 2 số có hệ số \(a_4\) cùng tính chẵn, lẻ. Tích hai số này là số chính phương.