Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta đặt mẫu chung là: abcd (a khác 0)
- Có 9 cách chọn a
- Có 9 cách chọn b
- Có 8 cách chọn c
- Có 7 cách chọn d
Ta lập được là: 9 x 9 x 8 x 7 = 4536 (số)
b) Ta đặt mẫu chung là: abcd
- Có 5 cách chọn a
- Có 4 cách chọn b
- Có 3 cách chọn c
- Có 2 cách chọn d
Ta lập được là: 5 x 4 x 3 x 2 = 120 (số)
c) Ta lập dãy số: 1000; 1005; 1010;...; 9995
Quy luật: Mỗi số hạng liên tiếp liền kề sẽ cách nhau 5 đơn vị
Áp dụng công thức dãy số cách đều, ta có số số hạng là:
(9995 - 1000) : 5 + 1 = 1800 (số)
d) Ta đặt mẫu chung là: abcd (d = 0 hoạc 5)
Trường hợp d = 0
- Có 9 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 9 x 8 x 7 = 504 (số)
Trường hợp d = 5
- Có 8 cách chọn a
- Có 8 cách chọn b
- Có 7 cách chọn c
Trong trường hợp này, ta lập được là: 8 x 8 x 7 = 448 (số)
Ta lập được là: 504 + 448 = 952 (số)
Đ/S
HT
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
\(\overline{abcde}\)
TH1: e=0
e có 1 cách chọn
Chữ số 2 có 4 cách chọn
ba chỗ còn lại có 4*3*2=24 cách
=>Có 4*24=96 cách
TH2: e=5; a=2
a,e có 1 cach
b có 4 cách
c có 3 cách
dcó 2 cách
=>Có 4*3*2=24 cách
TH3: e=5; a<>2
e có 1 cách chọn
a có 3 cách chon
số 2 có 3 cách
hai số còn lại có 3*2=6 cách
=>Có 3*3*6=54 cách
=>CÓ 96+24+54=174 số
Để số có 3 chữ số, tổng 3 chữ số chia hết cho 9 có các trường hợp
{9;8;1} ; {9;7;2} ; {9;6;3} ; {9;5;4} ; {8;7;3} ; {8;6;4} ; {7;6;5}
\(7.3!=42\)cách
mình sửa bài nhé
Để số có 3 chữ số, tổng 3 chữ số chia hết cho 9 có các trường hợp
{9;8;1} ; {9;7;2} ; {9;6;3} ; {9;5;4} ; {8;7;3} ; {8;6;4} ; {7;6;5} ; {1;2;6} ; {1;3;5} ; {1;8;0} ; {2;3;4} ; {2;6;1} ; {2;7;0} ; {3;6;0} ; {3;5;1}
\(12.3!+3.2=78\)cách
TH1: Hàng đơn vị là 0
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)
TH2: Hàng đơn vị là 5
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)
Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)
Đáp số: 3150 số thoả mãn
Chọn các chữ số hàng trăm, hàng chục, hàng đơn vị trong các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
a) - chữ số hàng trăm có 9 cách (khác 0)
- chữ số hàng chục có 9 cách (khác chữ số hàng trăm)
- chữ số hàng đơn vị có 8 cách (khác chữ số hàng trăm và hàng chục)
Vậy có tất cả 9. 9. 8 = 648 số tự nhiên có 3 chữ số khác nhau.
b) - Chọn chữ số hàng đơn vị có 5 cách
- Chọn chữ số hàng trăm có 8 cách
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 5. 8. 8 = 320 số lẻ có 3 chữ số khác nhau.
c) - Chọn chữ số hàng đơn vị có 2 cách
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 10 cách
Vậy có tất cả 2.9.10 = 180 số tự nhiên có 3 chữ số chia hết cho 5.
d) Trường hợp 1: chữ số hàng đơn vị là 0.
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 8 cách
Trường hợp 2 chữ số hàng đơn vị là 5:
- Chọn chữ số hàng trăm có 8 cách (khác 0 và 5)
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 9.8 +8.8 = 136 số tự nhiên có 3 chữ số khác nhau và chia hết cho 5.