Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thôi để giải luôn
Xét phương trình: \(x^3+ax^2+bx+c=0\left(1\right)\)
Đặt : \(f\left(x\right)=x^3+2x^2+bc+c\)
Từ giả thiết \(\left\{{}\begin{matrix}4a+c>8+2b\Rightarrow-8+4a-2b+c>0\Rightarrow f\left(-2\right)>0\\a+b+c< -1\Rightarrow1+a+b+c< 0\Rightarrow f\left(1\right)< 0\end{matrix}\right.\)
Do đó \(f\left(-2\right).f\left(1\right)< 0\) nên pt (1) có ít nhất một nghiệm trong \(\left(-2;1\right)\)
Ta nhận thấy:
\(\overset{lim}{x\rightarrow-\infty}f\left(x\right)=-\infty\) mà \(f\left(-2\right)>0\) nên phương trình (1) có ít nhất một nghiệm \(\alpha\in\left(-\infty;-2\right)\)
Tương tự: \(\overset{lim}{x\rightarrow+\infty}f\left(x\right)=+\infty\) mà \(f\left(1\right)< 0\) nên phương trình (1) có ít nhất một nghiệm \(\beta\in\left(1+\infty\right)\)
Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm nên pt trên sẽ có 3 nghiệm thực phân biệt.
Đáp án D
Số a không thể bằng 0 do đó a , b , c ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6
Với mỗi cách chọn ra 3 số bất kì trong tập 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ta được 1 số thỏa mãn a < b < c
Do đó C 6 3 = 20 số
\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{4x^2-3x+1}{2x+1}-ax-b\right)=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{4x^2-3x+1-\left(2x+1\right)\left(ax+b\right)}{2x+1}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4-2a\right)x^2-\left(a+2b+3\right)x-b+1}{2x+1}\)
Giới hạn đã cho bằng 0 khi và chỉ khi: \(\left\{{}\begin{matrix}4-2a=0\\a+2b+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-\dfrac{5}{2}\end{matrix}\right.\)
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
\(\Rightarrow\) d có 5 cách chọn (từ 1;3;5;7;9)
a có 8 cách chọn (khác 0 và d)
b có 8 cách chọn (khác a và d)
c có 7 cách chọn (khác a;b;c)
\(\Rightarrow\) có \(5.8.8.7=2240\) số