Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2019 = 3*673
n^3 +2019 chia hết cho 6 => n^3 + 2019 chia hết cho 3
Mà 2019 chia hết cho 3 nên n^3 chia hết cho 3 => n chia hết cho 3.
n^3 + 2019 chia hết cho 6 => n^3 + 2019 chia hết cho 2
Mà 2019 là số lẻ nên n^3 phải lẻ => n lẻ
Vậy n là số lẻ chia hết cho 3 thì n^3 + 2019 chia hết cho 6 (3,9,...,2019)
Số tự nhiên n thỏa mãn: (2019-3)/6 + 1 = 337
bài 2
Cộng 2 vế của -4038.(1) + (2) ta được
\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)
\(\le2019^3+1-2019.2019^2-2019.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)
\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)
\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)
Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)
\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)
*Nếu A = 0
Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)
Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)
*Nếu A = 1
\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)
Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0
Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019
Giả sử \(a_1=a_2=...=a_{2018}=2019\)
Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)
Thử lại...(tự thử nhé)
Vậy...
Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4
Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3
Mà n là số tự nhiên nên n = 1
EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath
Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b
=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)
và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)
Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)
Ta thấy : \(a+b+c=1\Rightarrow a,b,c< 1\)
Lại có : \(a+b+c=a^3+b^3+c^3\)
\(\Rightarrow a+b+c-a^3-b^3-c^3=0\)
\(\Rightarrow a.\left(1-a^2\right)+b.\left(1-b^2\right)+c.\left(1-c^2\right)=0\) (*)
Do : \(a,b,c< 1\Rightarrow\left\{{}\begin{matrix}1-a^2>0\\1-b^2>0\\1-c^2>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a.\left(1-a^2\right)\ge0\\b.\left(1-b^2\right)\ge0\\c.\left(1-c^2\right)\ge0\end{matrix}\right.\) mà (*) nên ta có :\(\left\{{}\begin{matrix}a.\left(1-a^2\right)=0\\b.\left(1-b^2\right)=0\\c.\left(1-c^2\right)=0\end{matrix}\right.\)
Theo bài có \(a+b+c=a^3+b^3+c^3\)
nên : \(\left(a,b,c\right)\in\left\{\left(1,0,0\right),\left(0,1,0\right),\left(0,0,1\right)\right\}\)
Trong cả ba trường hợp trên thì \(M=1\)
Vậy : \(M=1\) với \(a,b,c\) thỏa mãn đề.
2019 = 3*673
n^3 +2019 chia hết cho 6
=> n^3 + 2019 chia hết cho 3
Mà 2019 chia hết cho 3 nên n^3 chia hết cho 3
=> n chia hết cho 3.
n^3 + 2019 chia hết cho 6
=> n^3 + 2019 chia hết cho 2
Mà 2019 là số lẻ nên n^3 phải lẻ
=> n lẻ
Vậy n là số lẻ chia hết cho 3 thì n^3 + 2019 chia hết cho 6 (3,9,...,2019)
Số tự nhiên n thỏa mãn: (2019-3)/6 + 1 = 337