Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương án 1: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó không có số 0.
+ Bước 1: Chọn 3 số lẻ, có cách.
+ Bước 2: Chọn 3 số chẵn, có cách.
+ Bước 3: Xếp thứ tự 6 chữ số vừa lấy theo hàng ngang, có 6! = 720 cách.
Theo quy tắc nhân thì số các số trong phương án này là: 10.4.720 = 28800 số.
Phương án 2: Xét các số được lập có 3 chữ số lẻ, 3 chữ số chẵn trong đó có số 0.
Tương tự như trên, số các số tự nhiên trong phương án này là: số.
Vậy số các số tự nhiên thỏa mãn yêu cầu là: 28800 + 36000 = 64800 số.
Chọn B.
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Gọi là số cần lập với đôi một khác nhau .
Vì x là số lẻ nên d có 3 cách chọn.
Với mỗi cách chọn d ta có a ∈ A \ {0;d} nên a có cách chọn
Với mỗi cách chọn a;d ta có cách chọn bc
Theo quy tắc nhân ta có: số thỏa yêu cầu bài toán
Chọn A.
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
có 720 số tự nhiên có 6 chữ số được lập từ các số trên
Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.
Gọi số cần lập là a b c d e f
+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)
+ Chọn e : Có 5 cách chọn (khác f).
+ Chọn d : Có 4 cách chọn (khác e và f).
+ Chọn c : Có 3 cách chọn (khác d, e và f).
+ Chọn b : Có 2 cách chọn (khác c, d, e và f).
+ Chọn a : Có 1 cách chọn (Chữ số còn lại).
⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1 = 360 (cách chọn).
Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.
Chọn 2 số lẻ từ 5 chữ số lẻ: \(C_5^2\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn: \(C_5^3\)
Xếp 8 chữ số theo thứ tự bất kì: \(C_5^2.C_5^3.\dfrac{8!}{2!.2!.2!}\)
Chọn 3 chữ số chẵn từ 5 chữ số chẵn trong đó có mặt số 0: \(C_4^2\)
Xếp 8 chữ số (có mặt số 0) sao cho số 0 đứng đầu: \(C_5^2C_4^2.\dfrac{7!}{2!.2!}\)
Số số thỏa mãn: \(C_5^2C_5^2\dfrac{8!}{2!.2!.2!}-C_5^2C_4^2.\dfrac{7!}{2!.2!}=...\)
Đưa các chữ số của số tự nhiên cần lập vào các ô trống:
. | . | . | . | . | . | . | . |
TH1: Có chữ số 0:
Đưa 0 vào : \(C^2_7\) cách
Chọn và đưa 2 số chẵn còn lại vào : \(C^2_4C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH1 lập được \(C^2_7C^2_4C^2_6C^2_4A^2_5=226800\) số
TH2: Không có chữ số 0:
Chọn và đưa 3 số chẵn vào : \(C^3_4C^2_8C^2_6C^2_4\) cách
Chọn 2 chữ số lẻ : \(A^2_5\) cách
=>TH2 lập được \(C^3_4C^2_8C^2_6C^2_4A^2_5=201600\) số
Vậy có 226800 + 201600 = 428400 số
Gọi số đó có dạng \(\overline{abc}\)
Số lẻ \(\Rightarrow c=\left\{1;3;5;7;9\right\}\) => c có 5 cách chọn
a={1;2;3;4;5;6;7;8;9}=> a có 8 cách chọn
b={0;1;2;3;4;5;6;7;8;9}=> b có 8 cách chọn
=> đáp án của bạn :v