Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dãy các số nguyên dương nhỏ hơn 2016 chia hết cho4 là:
4;8;12;...;2012
Dãy trên có số phần tử là:
(2012-4):4+1=503(số)
Số các số nguyên dương nhỏ hơn 2016 là:
(2016-1):1+1=2016(số)
Có số số nguyên dương nhỏ hơn 2016 và không chia hết cho 4 là:
2016-503=1513(số)
Xét các số dạng abc – (10d+e) sao cho thuộc tập {101,202,303,404,505,606,707,808,909}
Trường hợp 1 nếu d lấy từ 0 đên 8 thì với mỗi d ta chọn e lấy từ 0 đên 9 và ta có 0=<10d+e <=89
Khi đó luôn luôn tồn tại abc sao cho 909 >= abc - (10d+e) >=101
Vây mỗi d ta có 10 giá trị e và 9 giá trị abc thoả mãn vậy số có dạng thoả mãn là 9x10x9 = 810 số.
Trường hợp d=9.
Trường hợp e=0 ta có 9 số abc sao cho 909>=abc -90 >=101.
Trường hợp e=1 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 91 = 908 < 909.
Trường hợp e=2 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 92 = 907 < 909.
Trường hợp e=3 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 93 = 906 < 909.
Trường hợp e=4 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 94 = 905 < 909.
Trường hợp e=5 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 95 = 904 < 909.
Trường hợp e=6 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 96 = 903 < 909.
Trường hợp e=7 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 97 = 902 < 909.
Trường hợp e=8 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 98 = 901 < 909.
Trường hợp e=9 ta có 8 số abc sao cho 909>=abc -91 >=101. Do 999 – 99 = 900 < 909.
Vậy số trường hợp là 9x8+9= 81 => Tống số trường hợp là 810+81= 891.
4(x+2) =4x +8 = 4(x+1) +4
vì x+1 chia hết cho x+1
=> 4(x+1) chia hết x+1
=> 4 phải chia hết cho x+1
=> x+1 thuộc Ư ( 4)
=> x+1 thuộc { -4;-2;-1;1;2;4 }
x thuộc { -5;-3;-2;0;1;3}
vậy có 4 gt nguyên của x
nhanh nhứt nhé !!!
Ta có:4(x+2) chia hết cho x+1
=>4x+8 chia hết cho x+1
=>4x+4+4 chia hết cho x+1
=>4(x+1)+4 chia hết cho x+1
Mà 4(x+1) chia hết cho x+1
=>4 chia hết cho x+1
=>x+1\(\in\)Ư(4)={-4,-2,-1,1,2,4}
=>x\(\in\){-5,-3,-2,0,1,3}
Vậy có 6 số nguyên x thỏa mãn
Lời giải:
Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.
Vì $b=at-3< a$
$\Rightarrow a(t-1)< 3$
$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$
Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$
$\Rightarrow t=1$. Khi đó: $b+3=a$
$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=4$ (tm)
Nếu $b=2$ thì $a=5$ (tm)
Nếu $b=3$ thì $a=6$ (tm)
Nếu $b=6$ thì $a=9$ (tm)
TH2: $a(t-1)=1\Rightarrow a=t-1=1$
$\Rightarrow a=1; t=2$.
$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)
TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$
$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)
Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$
Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.
3n+14 =3(n+1) +11 chia hết cho n+1 => 11 chia hết cho n+1
n+1 thuộc U(11) ={1;11}
+ n+1 =1 => n =0 loại
+n+1 =11 => n =10
Vậy n =10
x*x+4x+13=x{4+x}+13 chia hết cho x+4
vì x{x+4} chia hết cho x+4=>13 chia hết cho x+4=>x+4 thuộc Ư{13} mà Ư{13}={+-1,+-13}
x+4=1,-1,3,-3 thì lần lượt x=-3,-5,-1,-7.vậy có 4 phần tử tập hợp
ủng hộ mik nha M.N