K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2019

Ta có: \(x+y\ge2\sqrt{xy}\Rightarrow3xy\ge2\sqrt{xy}+1\Rightarrow3xy-2\sqrt{xy}-1\ge0\)

\(\Rightarrow\left(3\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)\ge0\Rightarrow\sqrt{xy}-1\ge0\) (do \(3\sqrt{xy}+1>0\) )

\(\Rightarrow\sqrt{xy}\ge1\Rightarrow xy\ge1\Rightarrow1-xy\le0\)

\(P=\dfrac{y\left(x+1\right)+x\left(y+1\right)}{xy\left(x+1\right)\left(y+1\right)}=\dfrac{2xy+x+y}{xy\left(xy+x+y+1\right)}\)

\(\Rightarrow P=\dfrac{2xy+3xy-1}{xy\left(xy+3xy\right)}=\dfrac{5xy-1}{4\left(xy\right)^2}=\dfrac{-4\left(xy\right)^2+5xy-1}{4\left(xy\right)^2}+1\)

\(\Rightarrow P=\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}+1\)

Do \(\left\{{}\begin{matrix}1-xy\le0\\4xy+1>0\\4\left(xy\right)^2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}\le0\)

\(\Rightarrow P\le0+1=1\Rightarrow P_{max}=1\) khi \(x=y=1\)

13 tháng 10 2020
https://i.imgur.com/MvSMf1t.png
13 tháng 10 2020

dòng 2 với 3 mình vẫn chưa hiểu

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

4 tháng 9 2021

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

8 tháng 3 2021

đề bài có nhầm ko bạn

9 tháng 3 2021

ko nhầm đâu bạn