Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học
2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365
Bài toán này là 'Bài toán 108' thuộc chuyên mục 'Toán vui hàng tuần' mà !
- Vì N là số tự nhiên có hai chữ số nên đặt \(N=\overline{ab}\) \(\left(0< a\le9;0\le b\le9;a,b\in N\right)\)
Ta có \(S\left(N\right)=S\left(\overline{ab}\right)=ab\) ; \(P\left(N\right)=P\left(\overline{ab}\right)=a+b\)
Vì \(N=S\left(N\right)+P\left(N\right)\) nên \(\overline{ab}=ab+a+b\)
\(\Rightarrow10a+b=ab+a+b\)
\(\Rightarrow9a=ab\Rightarrow b=9\) (vì a khác 0)
Vậy chữ số hàng đơn vị của N là 9 ---> chọn E
Bài hay vậy!
Từ các giả thiết về số chẵn suy ra \(b,d,f,h\) là các chữ số chẵn còn \(a,c,e,g,i\)là các chữ số lẻ.
Do \(\overline{abcde}\) chia hết cho 5 nên \(e=5\).
Từ các giả thiết về chia hết cho 3, 6, 9 suy ra \(\overline{abc},\overline{def},\overline{ghi}\) đều chia hết cho 3.
Nhận xét: Do \(\overline{cd}\) chia hết cho 4 mà \(c\) lẻ nên (bằng kiểm tra) suy ra \(d=2\) hoặc \(d=6.\)
Trường hợp 1: \(d=2\). Khi đó \(\overline{def}=\overline{25f}\) chia hết cho 3 nên \(f=8\).
\(\overline{fgh}=\overline{8gh}\) chia hết cho 8 nên \(\overline{gh}=16\). Nhưng khi đó \(\overline{ghi}=\overline{16i}\) chia hết cho 3 thì vô lí.
Trường hợp 2: \(d=6\). Khi đó \(\overline{def}=\overline{65f}\) chia hết cho 3 nên \(f=4\).
\(\overline{fgh}=\overline{4gh}\) chia hết cho 8 nên \(\overline{gh}=32\) hoặc \(\overline{gh}=72\).
Nếu \(\overline{gh}=32\) thì do \(\overline{ghi}\) chia hết cho 3 suy ra vô lí.
Do đó \(\overline{gh}=72\) nên \(\overline{ghi}=729\).
Ta đã có \(\overline{abcdefghi}=\overline{abc654729}\). Còn lại các chữ số \(1,3,8\).
Lưu ý \(b\) chẵn.
Nếu \(\overline{abc}=183\) thì \(1836547\) không chia hết cho 7 (vô lí).
Còn \(\overline{abc}=381\) thì \(3816547\) chia hết cho 7.
Đáp số là \(381654729\)
Ai giúp mình với