Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Hok tốt !
Cho mình hỏi là tại sao các số a,b,c,d khi chia cho 2 hoặc 3 đều phải cùng số dư. Và để có g trị nhỏ nhất thì sao phải dư một
Với bài này, ta phải chia trường hợp để phá ngoặc. VD để |x-1| = x-1 thì x-1 phải lớn hơn hoặc bằng 0, hay x lớn hơn hoặc bằng 1 là 1 trường hợp. Còn nếu x nhỏ hơn 1 thì |x-1| = -(x-1)
TH1: \(x< 1\), ta có :
\(-\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(1-x+5-x=4\)
\(6-2x=4\)
\(x=\frac{6-4}{2}=1\)( Không thỏa mãn x < 1 )
TH2 \(1\le x\le5;\)ta có :
\(\left(x-1\right)+\left[-\left(x-5\right)\right]=4\)
\(\Rightarrow x-1+5-x=4\)
\(4=4\)( Thỏa mãn )
Do đó với \(1\le x\le5;\) thì đẳng thức luôn thỏa mãn
TH3 : \(x>5;\)có :
\(x-1+x-5=4\)
\(2x-6=4\)
\(x=\frac{6+4}{2}=5\)(Không thỏa mãn )
Vậy \(1\le x\le5.\)
\(p,q\)nguyên tố lớn hơn \(3\)nên \(q=3k+1\)hoặc \(q=3k+2\)(\(k\inℤ\))
Nếu \(q=3k+1\Rightarrow p=3k+3⋮3\)(loại) nên \(q=3k+2\Rightarrow p=3k+4\).
Nếu \(k\)chẵn thì \(q=3k+2⋮2\)nên \(k\)là số lẻ. Đặt \(k=2l+1,\left(l\inℤ\right)\).
\(p+q=3k+2+3k+4=6\left(2l+1\right)+6=12l+12⋮12\).
\(|2x-7|\le25\Rightarrow-25\le2x-7\le25\Rightarrow-18\le2x\le32\Rightarrow-9\le x\le16\)
Số phần tử x nguyên dương thỏa mãn là 16 (x = 1 ; 2 ; 3 ; ... ; 16)
Theo đề: trị tuyệt đối của(2x-7) <= 25
<=> 2x-7>=0 và 2x-7<=25
hoặc 2x-7<=0 và 2x-7>=-25
<=> -9<= x<= 16
Mà đk là x>=0 nên suy ra tập hợp x bao gồm: 0, 1, 2, ....., 16 có: (16-0)/1 +1=17 phần tử x
các số chia hết cho 4 có khoảng cách là 4 đơn vị
số các số chia hết cho 4 nhỏ hơn 2016 là
(2012-0):4+1=503 số