Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu chữ số hàng chục là 9 thì có 9 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.9=9 số.
Nếu chữ số hàng chục là 8 thì có 8 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.8=8 số.
Nếu chữ số hàng chục là 7 thì có 7 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.7=7 số.
Nếu chữ số hàng chục là 1 thì có 1 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài(là 0).Theo quy tắc nhân có 1.1=1 số.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1+2+3+..+7+8+9=45
Mik đoán v
+) Nếu chữ số hàng chục là 9 thì có 9 cách chọn chữ số hàng đơn vị thoả mãn đề bài cho
=> Ta có: 9 số
+) Nếu chữ số hàng chục là 8 thì có 8 cách chọn chữ số hàng đơn vị thoả mãn đề bài cho
=> Ta có: 8 số
.....................
+) Nếu chữ số hàng đơn vị là 1 thì có 1 cách chọn chữ số hàng đơn vị thoả mãn đề bài
=> Ta có: 1 số
Vậy từ các trường hợp trên ta có số các số tự nhiên có 2 chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1+2+3+...+7+8+9=45 số
Trong các số tự nhiên có 2 chữ số thì có 9 số có các chữ số giống nhau (là 11, 22, 33, 44, 55, 66, 77, 88, 99) (không thỏa đề bài) và 9 số có tận cùng là 0 (là 10, 20, 30, 40, 50, 60, 70, 80, 90) (thỏa mãn đề bài)
Xét trường hợp 2 chữ số trong số đó là khác nhau và không có chữ số nào là 0. Xét tập hợp \(A=\left\{1;2;...;9\right\}\). Vì chữ số hàng chục phải lớn hơn chữ số hàng đơn vị nên số các số thỏa mãn trường hợp này chính là số cách chọn 2 trong 9 phần tử của tập hợp A mà không tính thứ tự.
Trước hết, ta đi tính số cách chọn 2 phần tử của A mà có kể thứ tự. Gọi 2 phần tử chọn ra đó là \(a,b\). Khi đó \(a\) có 9 cách chọn còn \(b\) có 8 cách chọn nên số cách chọn 2 phần tử từ tập A là \(9.8=72\) (cách).
Bây giờ, ta đi tính số cách chọn 2 phần tử của A mà không kể thứ tự. Thế thì có tất cả \(\dfrac{72}{2}=36\) cách vì mỗi cách chọn \(\left(a,b\right)\) và \(\left(b,a\right)\) trong trường hợp trước tương ứng với 1 cách chọn \(\left(a,b\right)\) trong trường hợp này.
Như vậy, có tất cả là \(9+36=45\) số thỏa mãn đề bài.
- Các số đó là :
Số có hàng trăm là chữ số 2 : 210 ( 1 số )
Số có hàng trăm là chữ số 3 : 320 ; 321 ( 2 số )
Số có hàng trăm là chữ số 4 : 430 ; 431 ; 432 ( 3 số )
Số có hàng trăm là chữ số 5 : 540 ; 541 ; 542 ; 543 ( 4 số )
Số có hàng trăm là chữ số 6 : 650 ; 651 ; 652 ; 653 ; 654 ( 5 số )
Số có hàng trăm là chữ số 7 : 760 ; 761 ; 762 ; 763 ; 764 ; 765 ( 6 số )
Số có hàng trăm là chữ số 8 : 870 ; 871 ; 872 ; 873 ; 874 ; 875 ; 876 ( 7 số )
Số có hàng trăm là chữ số 9 : 980 ; 981 ; 982 ; 983 ; 984 ; 985 ; 986 ; 987 ( 8 số )
Vậy có tất cả các số cần tìm là :
1 2 + 3 + 4 +5 + 6 + 7 + 8 = 36 ( số )
Đáp số : 36 số.
#Học tốt!
có 45 số nha bạn