Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hôm nay olm.vn sẽ hướng dẫn em cách giải toán nâng cao, dạng toán đếm số lần xuất hiện của chữ số của tiểu học em nhé.
Kiến thức cần nhớ:
Bước 1: Tìm số lần xuất hiện của chữ số cần tìm lần lượt ở các hàng, mà ở vị trí đó chữ số chỉ xuất hiện đúng một lần trong số này.
Bước 2: Cộng tất cả các kết quả đã tìm được ở bước 1 em được kết quả của bài toán.
a, Số có 3 chữ số có đúng một chữ số 4 có dạng: \(\overline{ab4}\); \(\overline{a4b}\); \(\overline{4ab}\)
+ Xét số có dạng: \(\overline{ab4}\)
\(a\) có 8 cách chọn ( do không chọn chữ số 0; chữ số 4)
\(b\) có 9 cách chọn ( do không chọn chữ số 4)
Số các số có 3 chữ số trong đó có đúng một chữ số 4 ở hàng đơn vị là:
8 \(\times\) 9 = 72 ( số)
+ Xét số có dạng: \(\overline{a4b}\)
\(a\) có 8 cách chọn
\(b\) có 9 cách chọn
Số các số có 3 chữ số trong đó có đúng 1 chữ số 4 ở hàng chục là:
8 \(\times\) 9 = 72 (số)
Xét số có dạng: \(\overline{4ab}\)
\(a\) có 9 cách chọn
\(b\) có 9 cách chọn
Số các số có 3 chữ số mà trong đó chỉ có đúng 1 chữ số 4 ở hàng trăm là:
9 \(\times\) 9 = 81 (số)
Số các số có 3 chữ số mà chứa đúng 1 chữ số 4 là:
72 + 72 + 81 = 225 (số)
Đáp số: 225 số.
b, Số các số có 2 chữ số 4 có dạng: \(\overline{a44}\); \(\overline{44a}\); \(\overline{4a4}\)
+ Xét các số có dạng: \(\overline{a44}\)
\(a\) có 8 cách chọn
Có 8 số có 3 chữ số mà trong đó mỗi số chỉ chứa đúng hai chữ số 4 ở hàng đơn vị và hàng chục.
+ Xét các số có dạng: \(\overline{44a}\)
\(a\) có 9 cách chọn
Có 9 số có 3 chữ số mà trong đó mỗi số chỉ chứa đúng hai chữ số 4 ở hàng trăm và hàng chục
+ Xét các số có dạng: \(\overline{4a4}\)
\(a\) có 9 cách chọn
Có 9 số có 3 chữ số mà trong đó mỗi số chỉ có đúng hai chữ số 4 ở hàng trăm và hàng đơn vị
Số các số có 3 chữ số mà mỗi chữ số chỉ chứa đúng hai chữ số 4 là:
8 + 9 + 9 = 26 (số)
Đáp số: 26 số
c, Các số chia hết cho 5 và có chứa chữ số 5 có dạng: \(\overline{ab5}\) ; \(\overline{a50}\) ; \(\overline{5a0}\)
+ Xét các số có dạng: \(\overline{ab5}\)
\(a\) có 9 cách chọn
\(b\) có 10 cách chọn
Số các số có dạng \(\overline{ab5}\) là: 9 \(\times\) 10 = 90 ( số)
+ Xét số có dạng: \(\overline{a50}\)
\(a\) có 9 cách chọn.
Số các số có dạng \(\overline{a50}\) là: 9 số
+ Xét các số có dạng: \(\overline{5a0}\)
\(a\) có 10 cách chọn
Số các số có dạng \(\overline{5a0}\) là: 10 số
Số các số có 3 chữ số có chứa chữ số 5 và chia hết cho 5 là:
90 + 9 + 10 = 109
Đáp số: 109 số
Mk làm thì làm đc nhưng ko hỉu phải giải thế nào nữa ?_? ?_? ?_?
a.)
Từ 1 -> 99 có 10 chữ số 3 ở hàng chục; 10 chữ số 3 ở hàng đơn vị => Có 20 chữ số 3.
Tương tự, 100 -> 999 có 9x20 chữ số 3 ở hàng chục và hàng đơn vị.
Và có thêm 100 chữ số 3 ở hàng trăm từ 300 -> 399
Tổng cộng có: 10x20 + 100 = 300 chữ số 3 từ 1->1000
b.) Các cách chọn chữ số:
7 | 8 | 8 |
- Hàng trăm: 1;3;4;6;7;8;9: có 7 cách chọn.
- Hàng chục: 10 chữ số trừ 2 chữ số 2 và 5, nên có 8 cách chọn
- Hàng đơn vị: Tương tự, có 8 cách.
Vậy, số có 3 chữ số không chứa chữ số 2 và chữ số 5 là: 7x8x8 = 448 số.
C 2:
Từ 100 đến 199 có 19 số có chứa chữ số 5
Từ 200 đến 299 có 19 số chứa chữ số 5
Lập luận như vậy ta tìm ra được từ 100 đến 999 có số các số có chứa chữ số 5 là:
19 x 8 + 100 = 252 ( số)
( 100 ở đây là tính từ 500 đến 599 có 100 số chứa số 5 còn các hàng trăm không phải là 5 thì lập luận để tìm như trên)
Vậy có số các số có 3 chữ số mà trong mỗi số không có chữ số 5 là : 900 - 252 = 648 (số)
số có 3 chữ số:
(999-100) :1+1=900(số)
số không có chữ số 5:
8x9x9=648(số)
số có chữ số 5:
900-648=252(số)
đáp số:252 số
khoang cach la 10
co so so hang la:
(995-105):10+1=90(so)
dap so:90 so
bạn ơi có 225 số
225 nhé!