Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Giả sử số chẵn có 4 chữ số đôi một phân biệt cần tìm có dạng
Với d = 0 thì a có 9 cách chọn, b có 8 cách chọn, c có 7 cách chọn. Do đó số các số chẵn cần tìm trong trường hợp này là 9.8.7 = 504
Với d ≠ 0 => d ∈ 2 ; 4 ; 6 ; 8 .Có 4 cách chọn d. Thì a có 8 cách chọn, b có 8 cách chọn, c có 7 cách chọn. Do đó số các số chẵn cần tìm trong trường hợp này là 4.8.8.7 = 1792
Số các số chẵn thỏa mãn yêu cầu bài toán là 504 + 1792 = 2296
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
a. Số số lập được: \(5.5=25\) số
b. \(5.5.4=100\) số
c. Gọi số đó là abcd
TH1: d=0 \(\Rightarrow abc\) có \(A_5^3=60\) cách
TH2: \(d\ne0\Rightarrow d\) có 2 cách, abc có \(4.4.3=48\)
Tổng cộng: \(60+2.48=156\) số
d. Gọi số đó là abcde
e có 3 cách chọn
abcd có \(4.4.3.2=96\) cách
Tổng cộng: \(3.96=288\) số
Chọn B
Gọi số cần tìm là : a 5 chẵn và trong số luôn có mặt số 0.
Số cần tìm được chọn từ một trong các trường hợp :
Trường hợp 1 : a 5 = 0 có 5 cách chọn.
Khi đó cách chọn. Suy ra có : A 9 4 (số).
Trường hợp 2 : có 4 cách chọn.
Chữ số 0 có 3 cách chọn vị trí cách chọn 3 số cho 3 vị trí còn lại.
Suy ra có : 4.3. A 8 3 (số).
Vậy ta có thỏa mãn yêu cầu bài toán.
Đáp án D
Gọi số cần tìm có 4 chữ số a b c d
· Trường hợp chọn a ∈ {5; 7; 9}có 3 cách
Chọn d ∈ {0; 2; 4; 6; 8}có 5 cách
Chọn đồng thời b, c có A 8 2 cách
Theo quy tắc nhân ta có 840 số
· Trường hợp chọn a ∈ { 6 }
Chọn d ∈ {0; 2; 4; 8} có 4 cách
Chọn đồng thời b, c có A 8 2 cách
Theo quy tắc nhân ta có 224 số
· Trường hợp chọn a ∈ { 8 }
Chọn d ∈ { 0 ; 2 ; 4 ; 6 } có 4 cách
Chọn đồng thời b, c có A 8 2 cách
Theo quy tắc nhân ta có 224 số
Theo quy tắc cộng ta có: 1288 số
3:
Ta sẽ chia M ra làm 3 nhóm
Nhóm 1: \(A=\left\{0;3;6\right\}\)
Nhóm 2: \(B=\left\{1;4;7\right\}\)
Nhóm 3: \(C=\left\{2;5;8\right\}\)
TH1: 1 số A,1 số B, 1 số C
*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách
*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách
=>Có 108+36=144 cách
TH2: 3 số A
=>Có 2*2*1=4 số
TH3: 3 số B
=>Có 3!=6 số
TH4: 3 số C
=>Có 3!=6 số
=>Có 144+4+6+6=148+12=160 số
Đáp án A
Gọi số cần lập là a b c d ¯ v ớ i a ; b ; c ; d ∈ 0 ; 1 ; 2 . . . 9
TH1: Với d = 0 suy ra a,b,c
có A 9 3 cách chọn và sắp xếp
TH2: Với d ∈ 2 ; 4 ; 6 ; 8
⇒ a có 8 cách chọn b , c c ó A 8 2 cách chọn và sắp xếp
Theo quy tắc nhân có 4.8. A 8 2 = 32 A 8 2 số
Áp dụng QTC cho cả 2 TH ta có
32 A 8 2 + A 9 3 = 2296 số