Có bao nhiêu mệnh đề sau là đúng?

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

1) X=log1-log2+log2-log3+...+log99-log100

=log1-log100

=0-2

=-2

Đáp án C

2)X=-log3100=-log3102=-2log3(2.5)=-2log32-2log35=-2a-2b

Đáp án A

22 tháng 2 2021

em gửi bài

1 một cấp số hạng đầu u1=3 và công bội q=2 . Tổng 7 số hạng đầu tiên của cấp số nhân là 2 cho hàm số f(x) có \(f^,\) (x)=\(x^{2019}.\left(x-1\right)^{2019}.\left(x+1\right),\forall\in R\) . Hàm số đã cho có bao nhiêu cực trị 3 số giao điểm dg cong \(y=x^3-2x^2+x-1\) và đường thẳng \(y=1-2x\) 4 Thể tích khối hộp chữ nhật có ba kích thước lần lượt bằng 3,4,5 bằng 5 cho a,b >0 , nếu \(log_8a+log_4b^2=5\)...
Đọc tiếp

1 một cấp số hạng đầu u1=3 và công bội q=2 . Tổng 7 số hạng đầu tiên của cấp số nhân là

2 cho hàm số f(x) có \(f^,\) (x)=\(x^{2019}.\left(x-1\right)^{2019}.\left(x+1\right),\forall\in R\) . Hàm số đã cho có bao nhiêu cực trị

3 số giao điểm dg cong \(y=x^3-2x^2+x-1\) và đường thẳng \(y=1-2x\)

4 Thể tích khối hộp chữ nhật có ba kích thước lần lượt bằng 3,4,5 bằng

5 cho a,b >0 , nếu \(log_8a+log_4b^2=5\)\(log_4a^2+log_8b=7\) hì giá trị của \(\frac{a}{b}\) bằng

6 tập nghiệm của bất pt \(log_{\frac{1}{5}}^2x-2log_{\frac{1}{5}}x-3>0\)

7 thể tích khối cầu ngoại tiếp bát diện đều có cạnh bằng \(a\sqrt{2}\)

8 mệnh đề nào sau đây sau

A log a < logb =>0<a<b

B lnx<1 => 0<x<1

C lnx>0 => x>1

D log a> logb => a>b>0

9 cho số phức z thỏa mãn \(\overline{z}\) +2i-5=0 . Mô đun của z bằng

10 trong ko gian với hệ trục tọa độ OXYZ cho M (1;-2;1), N (0;1;3) . Phương trình đường thẳng đi qa M,N là

3
NV
9 tháng 7 2020

7.

\(V=\frac{\left(a\sqrt{2}\right)^3\pi.\sqrt{2}}{3}=\frac{4\pi a^3}{3}\)

8.

Mệnh đề B sai

Mệnh đề đúng là: \(lnx< 1\Rightarrow0< x< e\)

9.

\(\overline{z}=5-2i\Rightarrow z=5+2i\Rightarrow\left|z\right|=\sqrt{5^2+2^2}=\sqrt{29}\)

10.

\(\overrightarrow{NM}=\left(1;-3;-2\right)\) nên đường thẳng MN nhận \(\left(1;-3;-2\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=t\\y=1-3t\\z=3-2t\end{matrix}\right.\)

NV
9 tháng 7 2020

4.

\(V=3.4.5=60\)

5.

\(\left\{{}\begin{matrix}log_8a+2log_4b=5\\log_8b+2log_4a=7\end{matrix}\right.\)

\(\Rightarrow log_8a-log_8b-2\left(log_4a-log_4b\right)=-2\)

\(\Leftrightarrow log_8\frac{a}{b}-2log_4\frac{a}{b}=-2\)

\(\Leftrightarrow\frac{1}{3}log_2\frac{a}{b}-log_2\frac{a}{b}=-2\)

\(\Leftrightarrow-\frac{2}{3}log_2\frac{a}{b}=-2\)

\(\Leftrightarrow log_2\frac{a}{b}=3\)

\(\Rightarrow\frac{a}{b}=8\)

6.

\(log_{\frac{1}{5}}x=t\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}log_{\frac{1}{5}}x=-1\\log_{\frac{1}{5}}x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{125}\end{matrix}\right.\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

2 tháng 4 2017

a) Đặt t = 13x > 0 ta được phương trình:

13t2 – t – 12 = 0 ⇔ (t – 1)(13t + 12) = 0

⇔ t = 1 ⇔ 13x = 1 ⇔ x = 0

b)

Chia cả hai vế phương trình cho 9x ta được phương trình tương đương

(1+(23)x)(1+3.(23)x)=8.(23)x(1+(23)x)(1+3.(23)x)=8.(23)x

Đặt t=(23)xt=(23)x (t > 0) , ta được phương trình:

(1 + t)(1 + 3t) = 8t ⇔ 3t2 – 4t + 1 = 0 ⇔ t∈{13,1}t∈{13,1}

Với t=13t=13 ta được nghiệm x=log2313x=log2313

Với t = 1 ta được nghiệm x = 0

c) Điều kiện: x > 2

Vì nên phương trình đã cho tương đương với:

[log3(x−2)=0log5x=1⇔[x=3x=5[log3(x−2)=0log5x=1⇔[x=3x=5

d) Điều kiện: x > 0

log22x – 5log2x + 6 = 0

⇔(log2x – 2)(log2x – 3) = 0

⇔ x ∈ {4, 8}