K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

 

Xét  x ∈ - π ; π mà  2 sin   x + 1 ≥ 0 2 cos   x + 1 ≥ 0 suy ra  x ∈ - π 6 ; 2 π 3

Ta có: 

Đặt  t =   sin x + cos x = 2 sin x + π 4 ⇒ t ∈ 3 - 1 2 ; 2

Và 2.sinx.cos x= t2- 1

Khi đó:

Suy ra y= f( t)  là hàm số đồng biến trên  3 - 1 2 ; 2 ⇒ m i n   f ( t ) = f ( 2 ) = 2 + 2 2 m a x   f ( t ) = f 3 - 1 2 = 1 + 3 2

Do đó, để f( t) = m2/ .8 có nghiệm  ⇔ 1 + 3 2 ≤ m 2 8 ≤ 2 + 2 2 ⇔ 2 1 + 3 ≤ m ≤ 4 1 + 2

Mà m nguyên chọn m= 5; 6;7; 8.

Chọn C.

1 tháng 9 2018

10 tháng 6 2019

Đặt .

Sử dụng chức năng MODE 7,

ta tìm

Để phương trình có nghiệm

.

Kết hợp điều kiện ta có .

Vậy có giá trị nguyên của m thỏa mãn yêu cầu bài toán.

 

Chọn D

25 tháng 3 2017

18 tháng 10 2018

7 tháng 7 2017

17 tháng 10 2017

Chọn C

20 tháng 8 2018

Đáp án là B

Phương trình tương đương với

Xét hàm  Ta có  đồng biến

Mà  suy ra

Đặt u = cosx, 

Khi đó phương trình trở thành 

Xét 

Bảng biến thiên

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi

3 tháng 11 2018

Chọn B.

Đặt t= 5x>  0.

+ Phương trình đã cho trở thành: t2-( m+2) t+2m-1=0  suy ra   ( 2)

 ( với t= 2 phương trình vô nghiệm).

Do đó phương trình đã cho có nghiệm khi phương trình (2) có nghiệm t> 0 .

+ Lập bảng biến thiên của hàm số f(t)  dựa vào bảng biến thiên suy ra  m ≤ 0 m ≥ 4

kết hợp điều kiện m nguyên và m  ∈ [0;2018] => m  ∈ {0;4;5;6;...;2018}

Vậy nghiệm 2016 giá trị của m thỏa mãn yêu cầu bài toán ra

 

NV
25 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))

Xét (1):

\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)

\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm

 Để pt đã cho có đúng 2 nghiệm phân biệt  ta có các TH sau:

TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)

TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định

(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)

Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)

\(\Rightarrow2< log_5m< \sqrt[3]{10}\)

\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)

\(\Rightarrow\) \(32-26+1\) giá trị nguyên