Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Phương pháp
Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x 2 + ( m + 3 ) x + m 2 = 0 phải có hai nghiệm phân biệt khác 1
Do đó với -1<m<3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt
Đáp án B.
Số giao điểm là số nghiệm của phương trình x 3 − 3 x 2 − 9 x + m = 0
⇔ m = − x 3 + 3 x 2 + 9 x
Xét
f x = − x 3 + 3 x 2 + 9 x ⇒ f ' x = − 3 x 2 + 6 x + 9
f ' x = 0 ⇔ x = − 1 x = 3
Từ bảng biến thiên ⇒ − 5 < m < 27 thỏa mãn yêu cầu đề bài toán.
=>Có 31 giá trị m thỏa mãn.
Đáp án D.
Phương trình hoành độ giao điểm của (C) và Ox là x 3 + a + 10 x 2 − x + 1 = 0 (*).
Dễ thấy x = 0 không là nghiệm của phương trình (*). Khi đó (*) ⇔ − a − 10 = x 3 − x + 1 x 2 .
Xét hàm số f x = x 3 − x + 1 x 2 = x − 1 x + 1 x 2 , có f ' x = x 3 + − 2 x 3 = 0 ⇔ x = 1.
Tính:
lim x → − ∞ x = − ∞ ; lim x → + ∞ x = + ∞ ; lim x → 0 − x = + ∞ ; lim x → 0 + x = − ∞ ; f 1 = 1.
Dựa vào bảng biến thiên, ta thấy f x = − a − 10 có nghiệm duy nhất ⇔ a > − 11.
Kết hợp với a là số nguyên âm ⇒ Có 10 giá trị cần tìm.
Chọn đáp án A.