Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho cac so x,y thoa man:x^4+x^2y^2+y^4-4=0
x^8+x^4y^4+y^8=8
A=x^12+x^2y^2+y^12 co gia tri la bao nhieu
X^8+x^4y^4+y^8=8
hay (x^4+y^4)^2-x^4y^4=8
hay (x^4+y^4+x^2y^2)(x^4+y^4-x^2y^2)=8
mà x^4+x^2y^2+y^4-4=0 nên x^4+y^3-x^2y^2=2
biết tổng hiệu tìm được x,y thôi/
gia tri nho nhat cua :
\(x+y+z=?\)
BIET \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
CHO GIAI TRI TIET NHA CAC BAN!
em mới lớp 7 à nhưng bài này em nhớ có lần thầy cho em cách giải rồi đợi em tìm lại đã
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
Câu 1:
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)
\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)
b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:
\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)
\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)
x3 - 8 = (x - 2)3
<=> x3 - 23 = x3 - 3x2.2 + 3x.22 - 23
<=> x3 - 8 - x3 + 6x2 - 12x + 8 = 0
<=> 6x2 - 12x = 0
<=> 6x.(x - 2) = 0
<=> \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy có 2 giá trị của x là x = 0 và x = 2 thỏa mãn yêu cầu bài toán.