K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-m\\x\ne\frac{m-1}{2}\end{matrix}\right.\)

Để hàm xác định trên khoảng đã cho

\(\Leftrightarrow\left\{{}\begin{matrix}-m\le1\\\left[{}\begin{matrix}\frac{m-1}{2}\le1\\2\le\frac{m-1}{2}< 4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge-1\\\left[{}\begin{matrix}m\le3\\5\le m< 9\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le m\le3\\5\le m< 9\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Lời giải:
Để $y$ xác định trên trên $(1;2)\cup [4;+\infty)$ thì:

\(\left\{\begin{matrix} x+m\geq 0\\ 2x-m+1\neq 0\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq x\\ m\neq 2x+1\end{matrix}\right., \forall x\in (1;2)\cup [4;+\infty)\)

\(\Leftrightarrow \left\{\begin{matrix} -m\leq 1\\ m\neq (3;5)\cup [9;+\infty)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\geq -1\\ m\in (-\infty;3]\cup [5;9)\end{matrix}\right.\)

Vì $m$ nguyên dương nên $m\in\left\{1;2;3;5;6;7;8\right\}$

Tức là có 7 giá trị $m$ thỏa mãn.

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

NV
21 tháng 1 2021

\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)

- Với \(m=-1\) thỏa mãn

- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)

\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)

\(\Rightarrow-1< m\le0\Rightarrow m=0\)

- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)

\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)

\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)

Vậy \(m=\left\{-2;-1;0\right\}\)

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

Lời giải:
ĐKXĐ: $x\geq 7$ và $x\geq m$

Để TXĐ là $D=[7;+\infty)$ thì m\leq 7$