K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2016

\(\frac{1}{n}+\frac{1}{m}=\frac{m}{mn}+\frac{n}{mn}=\frac{m+n}{mn}\) mà \(\frac{1}{n}+\frac{1}{m}=\frac{1}{24}\)

=>\(\frac{m+n}{mn}=\frac{1}{24}\)

=>24(m+n)=mn

24m+24n=mn

24m-mn+24n=0

m(24-n)+24n-576=-576

m(24-n)-576(24-n)=-576

(m-576)(24-n)=-576

Ta xét bảng sau:

m-5761-12-23-34-46-68-89-912-1216-1618-1824-2432-3236-3648-4864-6472-7296-96144-144192-192288-288576-576
m577575578574576573580572582570584568585567.....................................................................................0
24-n-576576-288288-192192-144144-9696-7272-6464-4848-3636-3232-2424-1818-1616-1212-99-88-66-44-33-22-11
n... ... ... ... ... ... .... ... ... ... ...........................................................................

(mấy ô ... là có giá trị, mấy ô bỏ trống là loại)

Vậy có 32 cặp số tự nhiên (n;m) thỏa mãn đề

24 tháng 5 2016

oe

16 tháng 9 2016

Ta có PT <=> 40m + 10n - mn = 0

<=> 10n = m(n - 40)

<=> m = \(\frac{10n}{n-40}\)= 10 + \(\frac{400}{n-40}\)

Để m tự nhiên thì n - 40 phải là ước của 400 và n lẻ nên n - 40 cũng lẻ => n - 40 là ước của 25

Ta lại có n < 55 => n - 40 < 15 => n -40 = (1; 5) tương ứng (m, n) = (41, 410; 45, 90)

16 tháng 9 2016

m,n nguyên hay tự nhiên thế bạn

Đặt \(d=\left(m,n\right)\)

Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)

Lúc đó

\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên

Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)

Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)

29 tháng 5 2017

Giải:

Giả sử \(p\) là số nguyên tố.

Từ \(a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2⋮p\) hoặc \(a⋮p\)\(b⋮p\left(1\right)\)

\(\Rightarrow a^2b^2⋮p^2\Rightarrow p\left(a^2+b^2\right)⋮p^2\Rightarrow a^2+b^2⋮p\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow a⋮p\)\(b⋮p\)

Từ \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Rightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right)\)

Từ \(a>2,b>2\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\Rightarrow\) Mâu thuẫn \(\Rightarrow p\) là hợp số (Đpcm).

29 tháng 5 2017
chịu thôi
13 tháng 10 2019

đkxđ: \(x,y\ne0\)

Khai triển ra ta được\(\frac{x^2}{y}-\frac{x^2}{43}+\frac{y^2}{x}-\frac{y^2}{43}+x+y=0\)


<=> \(\frac{x^2+y^2}{y}+\frac{x^2+y^2}{x}-\frac{x^2+y^2}{43}=0\)

<=>\(\frac{1}{x}+\frac{1}{y}-\frac{1}{43}=0\)

<=> \(\frac{x+y}{xy}=\frac{1}{43}\)

<=>\(43\left(x+y\right)-xy=0\)\(\orbr{\begin{cases}\hept{\begin{cases}43-x=1849\\43-y=1\end{cases}}\\\hept{\begin{cases}43-x=1\\43-y=1849\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=42\\y=-1806\end{cases}}\\\hept{\begin{cases}x=-1806\\y=42\end{cases}}\end{cases}}\)

<=>\(\left(43-x\right)\left(43-y\right)=1849\)(tự phân tích nhân tử)

  Tự giải phương trình ước số ra nghiệm (x,y)={(42;-1806);(-1806:42)}