Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có PT <=> 40m + 10n - mn = 0
<=> 10n = m(n - 40)
<=> m = \(\frac{10n}{n-40}\)= 10 + \(\frac{400}{n-40}\)
Để m tự nhiên thì n - 40 phải là ước của 400 và n lẻ nên n - 40 cũng lẻ => n - 40 là ước của 25
Ta lại có n < 55 => n - 40 < 15 => n -40 = (1; 5) tương ứng (m, n) = (41, 410; 45, 90)
Đặt \(d=\left(m,n\right)\)
Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)
Lúc đó
\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên
Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)
Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)
Câu hỏi của Mẫn Đan - Toán lớp 9 - Học toán với OnlineMath
\(\sqrt{3}>\frac{m}{n}\Rightarrow3>\frac{m^2}{n^2}\Rightarrow3n^2>m^2\Rightarrow3n^2\ge m^2+1\)
với 3n2=m2+1=>m2+1 chia hết cho 3
=>m2 chia 3 dư 2(vô lí)
\(\Rightarrow3n^2\ge m^2+2\)
lại có:\(\left(m+\frac{1}{2m}\right)^2=m^2+1+\frac{1}{4m^2}< m^2+2\)
\(\Rightarrow\left(m+\frac{1}{2m}\right)^2< 3n^2\Rightarrow m+\frac{1}{2m}< \sqrt{3}n\)
\(\Rightarrow\frac{m}{n}+\frac{1}{2mn}< \sqrt{3}\left(Q.E.D\right)\)
Bạn quy đồng cái đk cho trước lên,,rồi thay x1+x2 và x1.x2 vào,,,, OK???
Ta có
\(\frac{1+m^2}{1+n^2}=1+m^2-\frac{n^2\left(1+m^2\right)}{1+n^2}\le1+m^2-\frac{n^2\left(1+m^2\right)}{2}\)
Tương tự ta có
\(\frac{1+n^2}{1+p^2}\le1+n^2-\frac{p^2\left(1+n^2\right)}{2}\)
\(\frac{1+p^2}{1+m^2}\le1+p^2-\frac{m^2\left(1+p^2\right)}{2}\)
\(\Rightarrow A\le3+m^2+n^2+p^2-\frac{n^2\left(1+m^2\right)+p^2\left(1+n^2\right)+m^2\left(1+p^2\right)}{2}\)
\(=\frac{m^2+n^2+p^2-\left(m^2N^2+n^2p^2+p^2m^2\right)}{2}+3\)
\(\le\frac{m^2+n^2+p^2+2\left(mn+np+pm\right)}{2}+3\)
\(=\frac{\left(m+n+p\right)^2}{2}+3=\frac{1}{2}+3=\frac{7}{2}\)
\(a,b,c\in\left[0,1\right]\) do đó \(a^2+b^2+c^2\le a+b+c=1\)
Ta có: \(T=\text{∑}\left(a^2+1-\frac{b^2a^2+b^2}{1+b^2}\right)\)\(\le\text{∑}a^2+3-\text{∑}\frac{b^2a^2+b^2}{2}\)
\(=3+\frac{\text{∑}a^2-\text{∑}a^2b^2}{2}\le3+\frac{1}{2}\le\frac{7}{2}\)
\(\frac{1}{n}+\frac{1}{m}=\frac{m}{mn}+\frac{n}{mn}=\frac{m+n}{mn}\) mà \(\frac{1}{n}+\frac{1}{m}=\frac{1}{24}\)
=>\(\frac{m+n}{mn}=\frac{1}{24}\)
=>24(m+n)=mn
24m+24n=mn
24m-mn+24n=0
m(24-n)+24n-576=-576
m(24-n)-576(24-n)=-576
(m-576)(24-n)=-576
Ta xét bảng sau:
(mấy ô ... là có giá trị, mấy ô bỏ trống là loại)
Vậy có 32 cặp số tự nhiên (n;m) thỏa mãn đề