Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
x,y nguyên thì \(\left|xy\right|\text{ và }\left|x-y\right|\text{ là các số nguyên không âm nên }\orbr{\begin{cases}xy=0\\x-y=0\end{cases}}\)
với \(xy=0\Rightarrow\orbr{\begin{cases}x=0\Rightarrow y=\pm1\\y=0\Rightarrow x=\pm1\end{cases}}\)
với \(x-y=0\Rightarrow x=y=\pm1\)
vậy có 6 cập x,y nguyên thỏa mãn là (0,1) ,(0,-1), (1,0), (-1,0) ,(1,1), (-1,-1)
=>x.(y-2)+3x=11
=>x.(y-2+3)=11
=>x.(y+1)=11
Mà 11=1.11 = 11.1 = (-1).(-11)=(-11).(-1)
Ta có bảng sau:
x | 1 | -1 | 11 | -11 |
y+1 | 11 | -11 | 1 | -1 |
y | 10 | -12 | 0 | -2 |
Vậy có 4 cặp(x;y) thỏa mãn
xy-3x+2y=11
xy-3x+2y=5+6
xy-3x+2y-6=5
<2y+2y>-<3x+6>=5
y<x+2>-3<x+2>=5
<x+2>.<x-3>thuộc ư<5>
ư<5>={1;5}
Vì x+2 lớn hơn hoặc bằng 2
suy ra ta có x+2=5 suy ra x=5-2=3
y-3=1 suy ra y =1+3=4
Vậy ta có 1 cặp số nguyên <x;y> là x=3
y=4
****
Ta có xy=3(y-x) => xy+3x-3y=0
=> x(y+3)-3y=0=> (x-3).(y+3)=-9
=> (x-3).(y+3)=-1.9=-3.3=-9.1=1.(-9)=3.(-3)=9.(-1)
=> x=2;0;-6;4;6;12
y=6;0;-2;-12;-6;-4
vì (x;y) là cặp số nguyên dương x=-2 và y=12 loại
Vấy x có hai giá trị (2;0) tương ứng với hai giá trị của y ( 6;0)
xy+3x-2y=11
<=>xy+3x-2y-6=5
<=>x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
Lập bảng,tìm đc 4 cặp (x;y) thỏa mãn
xy + 3x - 2y = 11
xy + 3x - 2y + 6 = 11 + 6
x(y + 3) - 2(y + 3) = 17
(x - 2)(y + 3) = 17
(x - 2)(y + 3) = -17.(-1) = (-1).(-17) = 1.17 = 17.1
Vì -2 ; 3 là các số nguyên
Vậy có 4 cặp (x;y) thõa mãn
\(xy=x+y+9999999\)
<=> \(xy-x-y=9999999\)
<=> \(x\left(y-1\right)-y+1-1=9999999\)
<=> \(\left(y-1\right)\left(x-1\right)=10000000\)
<=> x-1 và y-1 là ước của 10000000.
\(xy=x+y+999999999\Leftrightarrow xy-x-y+1=999999999+1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=10^{10}\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=2^{10}\cdot5^{10}\)(1)
Nhận xét rằng: Nghiệm của (1) là x, y nguyên dương khác 1. Khi đó \(x-1\ge1;y-1\ge1\), để thỏa mãn (1) thì (x-1) và (y-1) là ước nguyên dương của \(2^{10}\cdot5^{10}\). Số cặp số nguyên dương (x;y) Thỏa mãn phương trình là số ước nguyên dương của \(2^{10}\cdot5^{10}\).
Mà \(2^{10}\cdot5^{10}\)có số ước nguyên dương là (10+1)*(10+1)=121. Vậy số cặp nguyên dương (x;y) thỏa mãn đề bài là: 121 cặp.