K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Chọn A

Mỗi cách xếp chỗ cho bốn bạn học sinh vào bốn chiếc ghế kê thành một hàng ngang là một hoán vị của 4 phần tử. Do đó có 4! = 24 cách.

7 tháng 12 2017

Đáp án A.

16 tháng 3 2018

Chọn B

Xếp 9 người vào 9 ghế kê hàng ngang ta có: Ω =9! cách sắp xếp.

Gọi B là biến cố để “mỗi thầy giáo ngồi giữa 2 học sinh và học sinh A ngồi ở một trong hai đầu hàng.”

Theo đề, học sinh A ngồi ở một trong hai đầu hàng nên có 2 cách sắp xếp.

Xếp 5 học sinh còn lại vào 5 vị trí có 5! cách sắp xếp. Xem mỗi học sinh tạo thành một vách ngăn tạo thành 5 khoảng trống. Xếp 3 thầy vào 5 khoảng trống có  A 5 3  cách.

 cách.

Chọn B

27 tháng 2 2023

  `n(\Omega)=6! =720`

`@TH1:` H/s lớp `C` ngồi đầu tiên hoặc cuối cùng.

  `=>` Có `2.1.A_3 ^1 .4! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

`@TH2:` H/s lớp `C` không ngồi đầu cũng không ngồi cuối.

  `=>` Có `4.A_3 ^2 .3! =144` cách xếp h/s lớp `C` không ngồi cạnh lớp `B`.

Gọi `A:`" H/s lớp `C` không ngồi cạnh h/s lớp `B`"

   `=>n(A)=144.2=288`

`=>P(A)=288/720=2/5`

    `->bb D`

15 tháng 6 2018

Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.

Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.

Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có  cách( có liên quan đến thứ tự).

Theo quy tắc nhân có  cách xếp thỏa yêu cầu.

Chọn C.

13 tháng 11 2017

Chọn B

Số phần tử của không gian mẫu là số cách sắp xếp 8 học sinh vào 8 chỗ ngồi khác nhau. Suy ra  n ( Ω ) = 8!

Gọi A là biến cố xếp 8 học sinh sao cho mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau. Ta đánh số các chỗ ngồi từ 1 đến 8 như sau:

Dãy 1:

1

2

3

4

Dãy 2:

8

7

6

5

Để sắp xếp các học sinh ngồi vào vị trí thỏa mãn yêu cầu bài toán ta sắp xếp như sau:

Trường hợp 1: 4 học sinh nam ngồi vào các số lẻ, 4 học sinh nữ ngồi vào các số chẵn. Trường hợp này có 4!4! cách.

Trường hợp 2: 4 học sinh nam ngồi vào các số chẵn, 4 học sinh nữ ngồi vào các số lẻ. Trường hợp này có 414! cách.

Do đó n(A) = 2.4!.4!

Vậy xác suất của biến cố A là 

5 tháng 10 2021

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

9 tháng 10 2022

Ở ý a) tại sao bạn A lại có $6!$ cách v ạ?

bạn B cx thế ạ?

7 tháng 5 2019

Chọn A

Xếp 6 học sinh có 6! cách xếp.

Giữa 6 học sinh có 5 khoảng trống.

Xếp 3 thầy giáo A, B, C vào 5 khoảng trống trên có: A 5 3  cách.

Vậy số cách xếp thỏa mãn yêu cầu là: 6!. A 5 3 = 43200 cách.