K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2015

gọi vận tốc của 2 người  lll : x, y(km/h) ĐK: x,y>0

trường hợp 1: có vận tốc, quãng đường => thời gian của mỗi người sẽ được tính như sau

thời gian người thứ nhất : 2/x (h) [thời gian=quãng đường: vận tốc]

thời gian người thứ hai : 3,6-2/y (h) 

ta có phương trình : 2/x=1,6/y (h) (1)

trường hợp 2 : người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường tức là thơi gian đi của 2 người như nhau hay bằng nhau 

thời gian người thứ nhất  đi sẽ đc tính 3,6:2/x (h)

thời gian người thứ hai đi sẽ đc tính 3,6:2/y (h)

vì là 1 người đi trc người kia 6' thì học gặp nhau nên  ta có phương trình 1,8/y - 1,8/x = 1/10 (đổi 6'=1/10 giờ) (2)

từ (1) (2) ta có hpt {......

bạn giải hpt ra rồi xem thõa mãn đk k rồi kết luận...:)))

 

27 tháng 1 2019
Gọi x(km/h) là vận tốc xe đi từ A-B

y (km/h) là vận tốc xe đi từ B-A

ĐK: x,y > 0

thời gian xe 1 đi từ A đến địa điểm cách A 2km: 2x2x(h)

thời gian xe 2 đi từ B đến điểm cách A 2km: 1,6y1,6y(h)

ta có pt : 2x=1,6y2x=1,6y (1)

Nếu cả 2 cùng giữ nguyên vận tốc như ban đầu thì:

+ thời gian xe 2 đi được nửa quảng đường ( đã xuất phát trước 6p):

1,8y0,11,8y−0,1(h)

+ thời gian xe 1 đi được nửa quảng đường: 1,8x1,8x

Ta có pt: 1,8x=1,8y0,11,8x=1,8y−0,1 (2)

Từ (1) và (2) ta có hệ pt :

2x=1,6y1,8x=1,8y0,1{2x=1,6y1,8x=1,8y−0,1 x=1,25y1,81,25y=1,8y0,1⇔{x=1,25y1,81,25y=1,8y−0,1 x=1,25y0,36y=0,1⇔{x=1,25y0,36y=0,1 {x=1,25.3,6y=3,6⇔{x=1,25.3,6y=3,6 {x=4,5y=3,6⇔{x=4,5y=3,6 (TM)

Vậy vận tốc của xe 1 là 4,5 km/h vận tốc xe 2 là 3,6 km/h

28 tháng 9 2017

chả bạn nào kả mới kiểm tra 15 phút xong ko ak

28 tháng 9 2017

v~ mai tui KT 1 tiết rồi

Chào mọi người. Lâu rồi mình chưa làm tiếp về phần ôn thi vào 10 chuyên Toán, vậy nên hôm nay mình sẽ làm tiếp về 2 phần còn lại của số học là: Số nguyên tố, hợp số và phương trình nghiệm nguyên nhé!Các bạn có thể xem những bài viết trước của...
Đọc tiếp

Chào mọi người. Lâu rồi mình chưa làm tiếp về phần ôn thi vào 10 chuyên Toán, vậy nên hôm nay mình sẽ làm tiếp về 2 phần còn lại của số học là: Số nguyên tố, hợp số và phương trình nghiệm nguyên nhé!

Các bạn có thể xem những bài viết trước của mình:

https://hoc24.vn/cau-hoi/chao-moi-nguoi-minh-la-minh-day-minh-hom-nay-se-chia-se-tiep-cho-cac-ban-nhung-kien-thuc-lien-quan-den-ky-thi-chuyen-dayo-phan-truoc-minh-cung-da-noi-ve-phan-phuong-trinh-he-phuong-trinh-roi-ba.8374692898508

https://hoc24.vn/cau-hoi/hello-moi-nguoi-minh-la-binh-minh-moi-nguoi-tren-web-hay-goi-minh-la-san-sai-sun-rang-etc-noi-chung-la-moi-nguoi-co-the-goi-minh-la-gi-cung-d.8359703531873

I). Số nguyên tố/ hợp số.

Trước hết, số nguyên tố là số lớn hơn một, và chỉ có 2 ước là 1 và chính nó. Ngược lại hợp số là số lớn hơn một, và có nhiều hơn 2 ước.

Một số tính chất cơ bản về số nguyên tố hay hợp số mà bạn nên biết.

1) Số nguyên tố nhỏ nhất là 2, và là số chẵn duy nhất.

2) Mọi hợp số có thể phân tích ra thừa số nguyên tố.

3) Số nguyên tố lớn hơn 2 luôn có dạng `4k+-1` hay `6k+-1`.

4) `ab vdots p` thì `a vdots p` hoặc `b vdots p` với p nguyên tố.

5) Số ước số của `n=(n_1+1)(n_2+1)(n_3+1)...` với n là số mũ của thừa số nguyên tố khi phân tích.

VD: `12=2^2 xx 3 -> 12` có `(2+1)(1+1)=6` ước.

6) Hai số liên tiếp nhau luôn NTCN.

7) Hai số a,b gọi là NTCN khi `(a, b)=1`.

Vận dụng các tính chất sau, các bạn thử giải những bài toán sau nhé.

Bài 1: `a, n^2+n+2` là số nguyên tố hay hợp số?

`b, p^2+200` là số nguyên tố hay hợp số?

Bài 2: Tìm `p` để `p+2, p+4, p+6, p+8` là số nguyên tố.

Bài 3: Cho p là số nguyên tố và một trong 2 số 8p + 1 và 8p - 1 là 2 số nguyên tố, hỏi số thứ 3 (ngoài 2 số nguyên tố, số còn lại) là số nguyên tố hay hợp số?

Bài 4: Hai số `2^n-1` và `2^n+1` có thể đồng thời nguyên tố không? Vì sao.

Bài 5: a) Chứng minh rằng số dư trong phép chia của một số nguyên tố cho 30 chỉ có thể là 1 hoặc là số nguyên tố. Khi chia cho 30 thì kết quả ra sao?

b) Chứng minh rằng nếu tổng của n lũy thừa bậc 4 của các số nguyên tố lớn hơn 5 là một số nguyên tố thì (n,30) = 1.

II) Phương trình nghiệm nguyên.

Một số dạng phương trình nghiệm nguyên thường gặp:

Phương pháp dùng tính chất chia hết

Ví dụ: `3x+5y=17`.

`<=> x=(17-5y)/3`.

`=> 17 - 5y  vdots 3.`

`<=> 5y equiv 2 (mod 3)`

`=> y=3k+1 <=> x=-5k+4.`

Vậy `...`

Phương pháp xét số dư từng vế

VD: Tìm x, y nguyên tố:

`y^2-2x^2=1`.

`<=> y^2=1+2x^2` nên `y` lẻ.

Đặt `y=2k+1 => y^2=(2k+1)^2 -> x=2k^2+2k,` mà `x` nguyên tố nên `x=2, y=3.`

Phương pháp sử dụng bất đẳng thức

VD: Tìm `x, y, z` tm: `1/x+1/y=z`

`<=> x+y=xyz`.

Không mất tổng quát, giả sử `x <=y`.

`=> xyz=x+y<=2y`

`<=> xz<=2`.

`@ x=1 => z=2 => y=1.`

`@ x=2 => z=1 => y=2`.

Vậy `...` 

Phương pháp dùng tính chất của số chính phương

VD: Tìm `x,y in ZZ` `x^2+y^2-x-y=8`

`<=> 4x^2+4y^2-4x-4y=32`.

`<=> (2x-1)^2+(2y-1)^2=34`

Do `x, y in ZZ` nên `(2x-1)^2, (2y-1)^2 in ZZ`.

`=> (2x-1)^2= 3^2` hoặc `(2x-1)^2=5^2`.

Đến đây bạn đọc tự giải các TH sau nhé.

Okay, vậy là phần số học cũng đã hoàn thành. Nếu bạn có ý kiến hay đóng góp thì hãy liên hệ với mình qua Facebook https://www.facebook.com/stfu.calcius/ nhé.

(Bài viết mình sử dụng một số bài của web tailieumontoan.com, các bạn có thể lên trên web nếu muốn luyện nhiều bài tương tự hơn nhé!)

2
26 tháng 10 2023

Cảm ơn bạn nhé đúng lúc mình đang cần mình sắp thi học sinh giỏi môn Toán nên cần gấp những kiến thức này cảm ơn bạn nhiều nhé

1 tháng 11 2023

hhhhhhhhhhhhrfbgnjyhmdnyzjh6j6hdrj6hfxtnyth7rfgnyhettfrhtncnhbtznfgftfxxvbhmzcxvnxnnnnnnnnnxyfh8wgcg8xfvbcsygfxcrhdty6rg56dberxfhtgbfvhg$RTF$retr3gs35tfg5r4fnBTRFGN^TgtgyndzdttgyntbbrFTG%dregbfgntxby6gzngtxygzrgjhntgrrtrt%$$%RTGNTGNR$TGBNGBNDTGGRT^HHH$URN&RHNH&YRNB

9 tháng 11 2016

Đừng có viết mấy cái linh tinh vào trang này nữa. Trang mạng này không phải để giới thiệu bản thân.

tôi cho bạn xem à con dog

28 tháng 4 2019

Cs này sợ nó khác. Các dạng bài này Milk ôn hồi tr vào cấp 3 nhưng h vẫn còn giữ lại. 

Kiến trúc dạng đề ôn như vầy:

DẠNG I : Rút gọn biểu thức

VD:

A=.......

Sau đó thường sẽ pải thục hiện:

+Rút gọn biểu thức đó

+Chứng minh 0< C<1

+Tính giá trị của x=...

+..

DẠNG  II: Giải phương trình-Hệ Phương trình

Trong dạng này thường giải các bài toán về Giải pương trình, hệ phương trình và bất phương trình.\

Chúc hc tốt!

Có j sai cho xl

~LucMilk~

28 tháng 4 2019

Cảm ơn nhiều ạ

26 tháng 12 2022

gõ trên mạng là ra nha

26 tháng 12 2022

có cùng trường đâu mà đưa