\(\sqrt{9}=\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

a) \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{2}.\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\)

\(=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

16 tháng 8 2018

ok  mk giải dk tối qua rồi , dù s cx thanks

7 tháng 10 2019

Dạng này thì đặt k là chắc ăn nhất !

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2k^2+5bk\cdot dk}{7b^2k^2-5bk\cdot dk}=\frac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\frac{bk^2\left(7b+5d\right)}{bk^2\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\)

\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b\left(7b+5d\right)}{b\left(7b-5d\right)}=\frac{7b+5d}{7b-5d}\)

\(\Rightarrowđpcm\)

7 tháng 10 2019

Đặt \(\frac{a}{b}=\frac{b}{d}=k\)

\(\frac{a}{b}=k\Rightarrow a=bk\)

\(\frac{b}{d}=k\Rightarrow b=dk\)

Ta có:

\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7\left(bk\right)^2+5.bk.dk}{7\left(bk\right)^2-5.bk.dk}=\frac{7b^2.k^2+5bd.k^2}{7b^2.k^2-5bd.k^2}=\frac{k^2.\left(7b^2+5bd\right)}{k^2.\left(7b^2-5bd\right)}\)

\(=\frac{7b^2+5bd}{7b^2-5bd}\)

\(\Rightarrowđpcm\)

22 tháng 7 2017

Từ pt đã cho dễ dàng suy ra x,y>0

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}\cdot\sqrt{x}}=2\)

\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}\cdot\sqrt{y}}=2\)

Cộng theo vế 2 BĐT trên ta có:

\(VT=\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge4=VP\)

Khi \(x=y=1\)

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

1 tháng 6 2018

Vì x,y không âm

=> \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\9+\sqrt{xy}>0\end{cases}}\)

Áp dụng bất đẳng thức cô-si cho 2 bất đẳng thức trên, ta có

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge2.\sqrt{\sqrt{x}.\sqrt{y}}=2.\sqrt{\sqrt{xy}}=2\sqrt[4]{xy}\\9+\sqrt{xy}\ge2.\sqrt{9.\sqrt{xy}}=2.3.\sqrt{\sqrt{xy}}=6.\sqrt[4]{xy}\end{cases}}\)

Ta có:

\(9+\sqrt{xy}\ge6.\sqrt[4]{xy}\)

=>  \(\frac{12\sqrt{xy}}{9+\sqrt{xy}}\le\frac{12\sqrt{xy}}{6\sqrt[4]{xy}}=2.\sqrt{\frac{xy}{\sqrt{xy}}}=2.\sqrt{\sqrt{xy}}=2\sqrt[4]{xy}\)

Mà \(\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\)

=>  \(\sqrt{x}+\sqrt{y}\ge\frac{12\sqrt{xy}}{9+\sqrt{xy}}\)

Dấu "=" xảy ra khi x = y và \(\sqrt{xy}=9\Leftrightarrow xy=81\)

=> Dấu "=" xảy ra khi x = y = 9 

15 tháng 7 2020

a, de phuong trinh tren co nghia thi \(3x-9\ge0\)

\(3x\ge9< =>x\ge3\)

b, de phuong trinh tren co nghia thi \(5-10x\ge0\)

\(< =>10x\le5\)\(< =>x\le\frac{1}{2}\)

c, de phuong trinh tren co nghia thi \(\frac{3}{2x+1}\ge0\)(DK: x khac -1/2)

\(< =>2x+1\ge0\)\(< =>x>-\frac{1}{2}\)

d, de phuong trinh tren co nghia thi \(\frac{2x-4}{3}\ge0\)

\(< =>2x-4\ge0\)\(< =>x\ge2\)

e, de phuong trinh tren co nghia thi \(\frac{x^2}{2x-3}\)

do \(x^2\ge\)suy ra \(2x-3\ge0\)

\(< =>2x\ge3\)\(< =>x\ge\frac{3}{2}\)

 
 
 
 
25 tháng 1 2018

mọi người giúp mình với mình cần gấp lắm