Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Vì H là trung điểm BC
=> BH = HC
Mà BH = BE (gt)
=> BH = HC = BE
Vì ∆ABC cân tại A
=> AB = AC
Mà AB = CD (gt)
=> AB = AC = CD
Ta có :
EB + AB = AE
HC + CD = HD
=> AE = HD
a) Ta có :
ACB là góc ngoài tại C của ∆ACD
Vì CA = CD
=> ∆ACD cân tại C
=> D = DAC = 2D
=> ACB = D + CAD = 2D
=> D = \(\frac{1}{2}ACB\:=\frac{1}{2}ABC\)(dpcm)

a) Vì b, c >=0 mà a+b+c=1 => c<= 1
Dấu = xảy ra <=> b=c=0
Vậy Max a=1 <=> b=c=0
b) a>=b >=c => 3a >=a+b+c hay 3a >=1 => a<=1/3
Dấu = xảy ra <=> b=c=1/3
Vậy Min a=1/3 <=> b=c=1/3

a: Đặt \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Theo đề, ta có: 5a=3b=15c
=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)
Xét ΔABC có \(\hat{A}+\hat{B}+\hat{C}=180^0\)
=>a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)
=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\Rightarrow\begin{cases}\hat{A}=60^0\\ \hat{B}=100^0\\ \hat{C}=20^0\end{cases}\)
b: AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)
Xét ΔADB có \(\hat{ADB}+\hat{DAB}+\hat{DBA}=180^0\)
=>\(\hat{ADB}=180^0-30^0-100^0=50^0\)

Vì tam giác ABC là tam giác cân tại A.
\(\Rightarrow\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-100^0}{2}=\frac{80^0}{20}=40^0\)
Vì \(\widehat{EAC}\) là góc ngoài của \(\Delta ABC\).
\(\Rightarrow\widehat{EAC}=180^0-100^0=80^0\)
Vì AE = BC
Mà AB = AC
=> AE = AC
\(\Rightarrow\Delta ABC\) là tam giác cân.
\(\Rightarrow\widehat{AEC}=\widehat{ACE}=\frac{180^0-80^0}{2}=\frac{100^0}{2}=50^0\)
Lạc Hiền . Mik thấy hơi sai sai bạn kiểm lại giúp mk nhé !!!