Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc đề bài của bạn còn thiếu, tìm x,y thuộc Z thì tìm đc chứ thế này thì vô tận mà @@
1) Đặt phép chia 1994xy cho 72, ta có:
1994xy : 72 = 27 dư 50xy
Xét x=1 => 501y : 72 = 6 dư 69y
Mà: số chia hết cho 72 gần số 69y là 648 và 720
=> 69y không chia hết cho 72 với mọi giá trị y
Từ đó ta thấy để 50xy chia hết cho 72 thì 50xy chia 72 phải có số dư là 72
=> x=4
Thay x=4 ta có: 504y : 72 = 6 dư 72y
Để 72y chia hết cho 72 thì y=0
Vậy các giá trị x,y cần tìm là: x=4; y=0
2) Ta có: n là số nguyên tố >3
=> n có dạng n= 3k+1 (k\(\in\)N*)
=> n2+2015 = 3k+1+2015
=> n2+2015 = 3k+2016
Do: 3k\(⋮\)3, 2016\(⋮\)3
=> 3k+2016 \(⋮\)3
=> n2+2015 \(⋮\)3
Vậy n2+2015 là hợp số
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)
Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.
Khi q=3k+2 thì p=3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ
Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn
Vậy số dư khi chia p+q cho 12 =0
p;q là các số nguyên tố >3 =>q=3k+1;3k+2
xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3 (trái giả thuyết)
=>q=3k+2=>p=3k+2+2=3k+4
=>p+q=3k+2+3k+4=6k+6=6(k+1)
q= 3k+2 không chia hết cho 2
=>3k không chia hết cho 2
=>k không chia hết cho 2
=>k+1 chia hết cho 2=>k+1=2a
=>p+q=6(k+1)=6.2a=12a chia hết cho 12
vậy p+q chia hết cho 12
Chứng minh : p+q chia hết cho 4. Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p, q sẽ có dạng 4k+1 và 4k+3. -> p+q chia hêt cho 4.
Vì p,q là số nguyên tố > 3 nên p,q chỉ có thể chia 3 dư 1 hoặc 2. p=3k+1 -> q=3k+3 chia hết cho 3 loại; p=3k+2 -> q= 3k+1 Nên p+q chia hết cho 3.
---> p+q chia hết cho 12
Số dư là :
(p+q+2) : 12
=2
Có ai giải được ko vậy