K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

nick bingbe của bn là j vậy

17 tháng 8 2019

Đề bài 1:

a)A=30x2yz-4xy2z-2008xyz     =>A có bậc 4

b)A=2xyz(15x-2y-1004z)            =>A=0 nếu 15x-2y=1004z

Đề bài 2:

Từ c(b+d)=2bd suy ra b+d=2bd/c

Viết a+c/b+d=2bc/2bd=c/d

Suy ra a/b=c/d=a+c/b+d

Biến đổi để có điều phải chứng minh.

19 tháng 4 2020

a) \(-\frac{x^{13}y^{12}}{75}\)

b) \(\frac{1024x^{70}y^{70}}{282475249}\)

c) \(-\frac{x^6y^9z^6}{2}\)

d) \(-\frac{u^3v^4}{2}\)

21 tháng 11 2018

\(\Leftrightarrow\frac{x^{2014}}{a^2+b^2+c^2+d^2}+\frac{y^{2014}}{a^2+b^2+c^2+d^2}+\frac{z^{2014}}{a^2+b^2+c^2+d^2}+\frac{t^{2014}}{a^2+b^2+c^2+d^2}\)

\(-\frac{x^{2014}}{a^2}-\frac{y^{2014}}{b^2}-\frac{z^{2014}}{c^2}-\frac{t^{2014}}{d^2}=0\)

\(\Leftrightarrow\left(\frac{x^{2014}}{a^2+b^2+c^2+d^2}-\frac{x^{2014}}{a^2}\right)+\left(\frac{y^{2014}}{a^2+b^2+c^2+d^2}-\frac{y^{2014}}{b^2}\right)+\left(\frac{z^{2014}}{a^2+b^2+c^2+d^2}-\frac{z^{2014}}{c^2}\right)\)

\(+\left(\frac{t^{2014}}{a^2+b^2+c^2+d^2}-\frac{t^{2014}}{d^2}\right)=0\)

\(\Leftrightarrow x^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+\)

\(z^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)

vì a2,b2,c2,d2 lớn hơn hoặc bằng 0

=>  \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\end{cases}}và....\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\)

\(\Rightarrow\hept{\begin{cases}x^{2014}=0\\y^{2014}=0\\z^{2014}=0\end{cases}}và..t^{2014}=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}và...t=0\)

=> \(\hept{\begin{cases}x^{2015}=0\\y^{2015}=0\\z^{2015}=0\end{cases}}và..t^{2015}=0\Rightarrow x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

vậy \(x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

6 tháng 4 2018

Các bạn trả lời chi tiết hộ mình cái =))

7 tháng 4 2018

a/ Ta có\(\left(-\frac{1}{3}xy\right)\left(3x^2yz^2\right)\)\(-x^3y^2z^2\)có hệ số là -1

b/ Ta có \(-54y^2.bx\)\(-54bxy^2\)có hệ số là -54b (với b là hằng số)

c/ Ta có \(\left(-2x^2y\right)\left(-\frac{1}{2}\right)^2x\left(y^2z\right)^3\)\(x^3y\left(y^2z\right)^3\)\(\left(x^3y\right)\left(y^6z^3\right)\)\(x^3y^7z^3\)có hệ số là 1.